Progress in RF-MEMS
1. Introduction
2. Overview of Articles in Micromachines
3. Conclusions
Conflicts of Interest
References
- Nathanson, H.C.; Newell, W.E.; Wickstrom, R.A.; Davis, J.R. The resonant gate transistor. IEEE Trans. Electron Devices 1967, 14, 117–133. [Google Scholar] [CrossRef]
- Gaddi, R.; Gnudi, A.; Tazzoli, A.; Meneghesso, G.; Zanoni, E. Reliability of RF-MEMS. In Proceedings of the European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, Paris, France, 3–4 October 2005; pp. 269–272. [Google Scholar]
- Tanner, M. MEMS reliability: Where are we now? Microelectron. Reliab. 2009, 49, 937–940. [Google Scholar] [CrossRef]
- Saleem, M.M.; Nawaz, H. A Systematic Review of Reliability Issues in RF-MEMS Switches. Micro Nanosyst. 2019, 11, 11–13. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, N.; Wang, L.; Huang, X. High-reliability circular-contact RF MEMS switches in silicon hermetic package. J. Micromech. Microeng. 2023, 33, 065004. [Google Scholar] [CrossRef]
- Ng, E.; Yang, Y.; Hong, V.A.; Ahn, C.H.; Heinz, D.B.; Flader, I.; Chen, Y.; Everhart, C.L.M.; Kim, B.; Melamud, R.; et al. The long path from MEMS resonators to timing products. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Ruby, R.; Merchant, P. Micromachined thin film bulk acoustic resonators. In Proceedings of the IEEE 48th Annual Symposium on Frequency Control, Boston, MA, USA, 1 June 1994; pp. 135–138. [Google Scholar] [CrossRef]
- Wu, G.; Xu, J.; Ng, E.J.; Chen, W. MEMS Resonators for Frequency Reference and Timing Applications. J. Microelectromech. Syst. 2020, 29, 1137–1166. [Google Scholar] [CrossRef]
- Rebeiz, G.M. RF MEMS: Theory, Design, and Technology; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2003; ISBN 0-471-20169-3. [Google Scholar]
- Rebeiz, G.M.; Muldavin, J.B. RF MEMS switches and switch circuits. IEEE Microw. Mag. 2001, 2, 59–71. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications. Microsyst. Technol. 2021, 27, 2525–2542. [Google Scholar] [CrossRef]
- Shao, B.; Lu, C.; Xiang, Y.; Li, F.; Song, M. Comprehensive Review of RF MEMS Switches in Satellite Communications. Sensors 2024, 24, 3135. [Google Scholar] [CrossRef]
- Percy, J.J.; Kanthamani, S. Revolutionizing wireless communication: A review perspective on design and optimization of RF MEMS switches. Microelectron. J. 2023, 139, 105891. [Google Scholar] [CrossRef]
- Iannacci, J.; Tagliapietra, G.; Bucciarelli, A. Exploitation of response surface method for the optimization of RF-MEMS reconfigurable devices in view of future beyond-5G, 6G and super-IoT applications. Sci. Rep. 2022, 12, 3543. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Lai, C. Design and Analysis of Pattern Reconfigurable Antenna Based on RF MEMS Switches. Electronics 2023, 12, 3109. [Google Scholar] [CrossRef]
- Iannacci, J.; Tagliapietra, G. Getting ready for beyond-5G, super-IoT and 6G at hardware passive components level: A multi-state RF-MEMS monolithic step attenuator analyzed up to 60 GHz. Microsyst. Technol. 2022, 28, 1235–1240. [Google Scholar] [CrossRef]
- Iannacci, J. Expectations versus actual market of RF-MEMS: Analysis and explanation of a repeatedly fluctuating scenario. In RF-MEMS Technology for High-Performance Passives; IOP Publishing: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- Hagelauer, A.; Ruby, R.; Inoue, S.; Plessky, V.; Hashimoto, K.-Y.; Nakagawa, R.; Verdu, J.; de Paco, P.; Mortazawi, A.; Piazza, G.; et al. From Microwave Acoustic Filters to Millimeter-Wave Operation and New Applications. IEEE J. Microw. 2023, 3, 484–508. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. Materials Selection Approaches and Fabrication Methods in RF MEMS Switches. J. Electron. Mater. 2021, 50, 3149–3168. [Google Scholar] [CrossRef]
- Göritz, A.; Wipf, S.T.; Drost, M.; Lisker, M.; Wipf, C.; Wietstruck, M.; Kaynak, M. Monolithic Integration of a Wafer-Level Thin-Film Encapsulated mm-Wave RF-MEMS Switch in BEOL of a 130-nm SiGe BiCMOS Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 921–932. [Google Scholar] [CrossRef]
- Zorpette, G. RF MEMS deliver the “ideal switch”: After two decades of development, MEMS-based RF switches are finally finding real-world uses. IEEE Spectr. 2020, 57, 8–9. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Liu, W.; Yang, J.; Zhu, Y.; Yang, F. A novel piezoelectric RF-MEMS resonator with enhanced quality factor. J. Micromech. Microeng. 2022, 32, 035002. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Pirro, M.; Zhao, X.; Herrera, B.; Simeoni, P.; Rinaldi, M. Effect of Substrate-RF on Sub-200 nm Al0.7Sc0.3N Thin Films. Micromachines 2022, 13, 877. [Google Scholar] [CrossRef]
- Tang, Z.; Esteves, G.; Zheng, J.; Olsson, R. Vertical and Lateral Etch Survey of Ferroelectric AlN/Al1−xScxN in Aqueous KOH Solutions. Micromachines 2022, 13, 1066. [Google Scholar] [CrossRef]
- Gao, C.; Zou, Y.; Zhou, J.; Liu, Y.; Liu, W.; Cai, Y.; Sun, C. Influence of Etching Trench on Keff2 of Film Bulk Acoustic Resonator. Micromachines 2022, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Workie, T.; Wu, Z.; Tang, P.; Bao, J.; Hashimoto, K. Figure of Merit Enhancement of Laterally Vibrating RF-MEMS Resonators via Energy-Preserving Addendum Frame. Micromachines 2022, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, A.; Lysenko, I.; Kovalev, A. Investigation and Research of High-Performance RF MEMS Switches for Use in the 5G RF Front-End Modules. Micromachines 2023, 14, 477. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, Y.; Deng, K.; Lai, C.; Zhou, J. Novel High Isolation and High Capacitance Ratio RF MEMS Switch: Design, Analysis and Performance Verification. Micromachines 2022, 13, 646. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, H.; Liu, Z. Modeling and Measurement of Thermal–Mechanical-Stress-Creep Effect for RF MEMS Switch Up to 200 °C. Micromachines 2022, 13, 166. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Wu, D. Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz. Micromachines 2023, 14, 280. [Google Scholar] [CrossRef]
- Han, J.; Ding, D. Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band. Micromachines 2022, 13, 786. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Z. Recent Advances in Flexible RF MEMS. Micromachines 2022, 13, 1088. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tait, R.N. Progress in RF-MEMS. Micromachines 2025, 16, 233. https://doi.org/10.3390/mi16020233
Tait RN. Progress in RF-MEMS. Micromachines. 2025; 16(2):233. https://doi.org/10.3390/mi16020233
Chicago/Turabian StyleTait, R. Niall. 2025. "Progress in RF-MEMS" Micromachines 16, no. 2: 233. https://doi.org/10.3390/mi16020233
APA StyleTait, R. N. (2025). Progress in RF-MEMS. Micromachines, 16(2), 233. https://doi.org/10.3390/mi16020233