Editorial for the Applications and Challenges for Gas Sensors
- Medical field
- 2.
- Public safety
- 3.
- Environmental monitoring
- 4.
- Food safety
Conflicts of Interest
References
- Zong, B.; Wu, S.; Yang, Y.; Li, Q.; Tao, T.; Mao, S. Smart Gas Sensors: Recent Developments and Future Prospective. Nano-Micro Lett. 2025, 17, 54. [Google Scholar] [CrossRef]
- Pashami, S.; Lilienthal, A.J.; Trincavelli, M. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors. Sensors 2012, 12, 16404–16419. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. J. Mater. Chem. C 2018, 6, 4342–4370. [Google Scholar] [CrossRef]
- Samaranayake, P.; Ahamed, A.; de Silva, V.; Wickramage, N.M.; Kooh, M.R.R.; Thotagamuge, R. Theoretical Study of CO, NO, NO2, Cl2, and H2S Adsorption Interactions with PdO-Graphene Composites for Gas Sensor Applications. Micromachines 2025, 16, 9. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Liang, T.; Mo, Q.; Wei, J.; Li, B.; Xing, X. First-Principles Insights into Highly Sensitive and Reusable MoS2 Monolayers for Heavy Metal Detection. Micromachines 2024, 15, 978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly sensitive gas sensing platforms based on field effect Transistor—A review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef]
- Ughade, Y.; Mehta, S.; Patel, G.; Gowda, R.; Joshi, N.; Patel, R. Progress in CO2 Gas Sensing Technologies: Insights into Metal Oxide Nanostructures and Resistance-Based Methods. Micromachines 2025, 16, 466. [Google Scholar] [CrossRef]
- Tamaki, J. High sensitivity semiconductor gas sensors. Sens. Lett. 2005, 3, 89–98. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Yang, H.; Chen, W.; Wang, Z.; Zhou, H.; Li, P.; Sun, X. Application of MXene composites for target gas detection in food safety. Food Chem. 2024, 460, 140620. [Google Scholar] [CrossRef]
- Wijesinghe, D.R.; Zobair, M.A.; Esmaeelpour, M. A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing. Sensors 2024, 24, 6577. [Google Scholar] [CrossRef]
- Teli, A.M.; Mane, S.M.; Mishra, R.K.; Jeon, W.; Shin, J.C. Unlocking the Potential of Ti3C2Tx MXene: Present Trends and Future Developments of Gas Sensing. Micromachines 2025, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Zonta, G.; Rispoli, G.; Malagu, C.; Astolfi, M. Overview of Gas Sensors Focusing on Chemoresistive Ones for Cancer Detection. Chemosensors 2023, 11, 519. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Cai, Y.; Zhao, J.; Gao, Z.; Song, Y.-Y. The Challenges and Opportunities for TiO2 Nanostructures in Gas Sensing. Acs Sens. 2024, 9, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Wang, Y.; Xu, Y.; Meng, Y.; Xu, L.; Liu, C.; Cheng, P.; Hao, Y. Yolk-shell microspheres perovskite Gd/Fe oxides with rich oxygen vacancies for ultra-sensitive properties in acetone detection. Chem. Eng. J. 2024, 490, 151869. [Google Scholar] [CrossRef]
- Li, X.; Zeng, W.; Zhuo, S.; Qian, B.; Chen, Q.; Luo, Q.; Qian, R. Highly Sensitive Room-Temperature Detection of Ammonia in the Breath of Kidney Disease Patients Using Fe2Mo3O8/MoO2@MoS2 Nanocomposite Gas Sensor. Adv. Sci. 2024, 11, e2405942. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, G.; Cao, Y.; Meng, C.; Li, Y.; Ji, H.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 2022, 8, 78. [Google Scholar] [CrossRef]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electron. Mater. Lett. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Luo, L.; Chen, J.; Hui, A.G.; Liu, R.; Zhou, Y.; Liang, H.; Wang, Z.; Luo, H.; Fang, F. Highly Sensitive Non-Dispersive Infrared Gas Sensor with Innovative Application for Monitoring Carbon Dioxide Emissions from Lithium-Ion Battery Thermal Runaway. Micromachines 2025, 16, 36. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Liang, T.; Mo, Q.; Wei, J.; Li, B.; Xing, X. Density Functional Theory Provides Insights into β-SnSe Monolayers as a Highly Sensitive and Recoverable Ozone Sensing Material. Micromachines 2024, 15, 960. [Google Scholar] [CrossRef]
- Park, I.; Yang, D.; Kang, K. MEMS/Nano-technologies for Smart Air Environmental Monitoring Sensors. J. Sens. Sci. Technol. 2015, 24, 281–286. [Google Scholar] [CrossRef]
- Li, Q.; Feng, F.; Jiang, C.; Song, S.; Peng, H.; Liao, Z. Carboxyl graphene oxide/graphene composite structure for the chemiresistive detection of acetaldehyde at room temperature. Sens. Actuators B Chem. 2025, 427, 137179. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Sima, C.; Li, T.L.; Wang, W.Z.; Pan, Y.F.; Wang, L.H.; Ming, Z.W.; Lu, P. Highly-sensitive photoacoustic gas sensor with dual resonant modalities for simultaneous NO and NO2 detection. Sens. Actuators B Chem. 2025, 434, 137596. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Z.; Zhu, H.; Wang, B.; Wang, H.; Meng, F. Study on the impact of minor ambient temperature variations on the gas sensing performance of zinc cobaltate semiconductor metal oxide sensor for toluene detection. Sens. Actuators B Chem. 2025, 433, 137570. [Google Scholar] [CrossRef]
- Matindoust, S.; Baghaei-Nejad, M.; Abadi, M.H.S.; Zou, Z.; Zheng, L.-R. Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [Google Scholar] [CrossRef]
- Xu, J.; Fan, X.; Xu, K.; Wu, K.; Liao, H.; Zhang, C. Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring. Nano-Micro Lett. 2025, 17, 115. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Chen, C.; Liu, X.; Qian, J. Highly sensitive and flexible ammonia sensor based on PEDOT:PSS doped with Lewis acid for wireless food monitoring. Chem. Eng. J. 2024, 493, 152652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Wang, Y.; Cheng, P. Editorial for the Applications and Challenges for Gas Sensors. Micromachines 2025, 16, 493. https://doi.org/10.3390/mi16050493
Lei Z, Wang Y, Cheng P. Editorial for the Applications and Challenges for Gas Sensors. Micromachines. 2025; 16(5):493. https://doi.org/10.3390/mi16050493
Chicago/Turabian StyleLei, Zhaohui, Yinglin Wang, and Pengfei Cheng. 2025. "Editorial for the Applications and Challenges for Gas Sensors" Micromachines 16, no. 5: 493. https://doi.org/10.3390/mi16050493
APA StyleLei, Z., Wang, Y., & Cheng, P. (2025). Editorial for the Applications and Challenges for Gas Sensors. Micromachines, 16(5), 493. https://doi.org/10.3390/mi16050493