Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alema, F.; Hertog, B.; Ledyaev, O.; Volovik, D.; Thoma, G.; Miller, R.; Osinsky, A.; Mukhopadhyay, P.; Bakhshi, S.; Ali, H.; et al. Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film. Phys. Status Solidi A 2017, 214, 1600688. [Google Scholar] [CrossRef]
- Moore, A.; Rafique, S.; Llewelyn, C.; Lamb, D.; Li, L. A Review of Ga2O3 heterojunctions for deep-UV photodetection: Current progress, methodologies, and challenges. Adv. Electron. Mater. 2025, 11, 2400898. [Google Scholar] [CrossRef]
- Almaev, A.; Tsymbalov, A.; Kushnarev, B.; Nikolaev, V.; Pechnikov, A.; Scheglov, M.; Chikiryaka, A. Self-powered UVC detectors based on α-Ga2O3 with enchanted speed performance. J. Semicond. 2024, 45, 082502. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Jessen, G.H. Guest editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Yakovlev, N.; Butenko, P.; Tsymbalov, A.; Boiko, M.; Kopyev, V.; Krymov, V.; Kushnarev, B.; Shapenkov, S.; et al. Electroconductive and photoelectric properties of Pt/(100) β-Ga2O3 Schottky barrier diode based on Czochralski grown crystal. J. Vac. Sci. Technol. A 2024, 42, 042802. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, M.; Porter, M.; Ma, Y.; Spencer, J.; Du, Z.; Jacobs, A.G.; Sasaki, K.; Wang, H.; Tadjer, M.; et al. 10-kV Ga2O3 Charge-balance Schottky rectifier operational at 200 °C. IEEE Electron Device Lett. 2023, 44, 1268–1271. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Z.; Ha, S.; Li, D.; Zhang, K.; Zhang, H.; Feng, J. Gallium oxide for gas sensor applications: A comprehensive review. Materials 2022, 15, 7339. [Google Scholar] [CrossRef]
- Almaev, A.V.; Chernikov, E.V.; Novikov, V.V.; Kushnarev, B.O.; Yakovlev, N.N.; Chuprakova, E.V.; Oleinik, V.L.; Lozinskaya, A.D.; Gogova, D.S. Impact of Cr2O3 additives on the gas-sensitive properties of β-Ga2O3 thin films to oxygen, hydrogen, carbon monoxide, and toluene vapors. J. Vac. Sci. Technol. A 2021, 39, 023405. [Google Scholar] [CrossRef]
- Jeon, H.M.; Leedy, K.D.; Look, D.C.; Chang, C.S.; Muller, D.A.; Badescu, S.C.; Vasilyev, V.; Brown, J.L.; Green, A.J.; Chabak, K.D. Homoepitaxial β-Ga2O3 transparent conducting oxide with conductivity σ = 2323 S cm−1. APL Mater. 2021, 9, 101105. [Google Scholar] [CrossRef]
- Hou, C.; Liang, K.; Yang, Z.; Wang, Q.; Zhang, Y.; Chen, F. Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O. J. Cryst. Growth 2025, 650, 127974. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; He, L.; Jia, Y.; Lu, Q.; Chen, H.; Ma, F.; Hao, Y. Growth characteristics and properties of Ga2O3 films fabricated by atomic layer deposition technique. J. Mater. Chem. C 2022, 10, 16247–16264. [Google Scholar] [CrossRef]
- Xu, C.; Shen, L.; Liu, H.; Pan, X.; Ye, Z. High-quality β-Ga2O3 films with influence of growth temperature by pulsed laser deposition for solar-blind photodetectors. J. Electron. Mater. 2021, 50, 2043–2048. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, X.; Jiang, Y.; Yao, T.; Chen, C.; Ye, H. Microstructure and optical properties of β-Ga2O3 thin films fabricated by pulsed laser deposition. Thin Solid Films 2024, 796, 140336. [Google Scholar] [CrossRef]
- Kalanov, D.; Unutulmazsoy, Y.; Spemann, D.; Bauer, J.; Anders, A.; Bundesmann, C. Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature. J. Vac. Sci. Technol. A 2022, 40, 033409. [Google Scholar] [CrossRef]
- Tak, B.R.; Kumar, S.; Kapoor, A.K.; Wang, D.; Li, X.; Sun, H.; Singh, R. Recent advances in the growth of gallium oxide thin films employing various growth techniques—A review. J. Phys. D Appl. Phys. 2021, 54, 453002. [Google Scholar] [CrossRef]
- Mochalov, L.; Logunov, A.; Vorotyntsev, V. Preparation of gallium of the special purity for semiconductors and optoelectronics. Sep. Purif. Technol. 2021, 258, 118001. [Google Scholar] [CrossRef]
- Mochalov, L.; Nezhdanov, A.; Strikovskiy, A.; Gushin, M.; Chidichimo, G.; De Filpo, G.; Mashin, A. Synthesis and properties of AsxTe100−x films prepared by plasma deposition via elemental As and Te. Opt. Quantum Electron. 2017, 49, 274. [Google Scholar] [CrossRef]
- Almaev, A.V.; Yakovlev, N.N.; Chernikov, E.V.; Erzakova, N.N.; Mochalov, L.A.; Kudryashov, M.A.; Kudryashova, Y.P.; Nesov, S.N. Gas sensitivity of PECVD β-Ga2O3 films with large active surface. Mater. Chem. Phys. 2024, 320, 129430. [Google Scholar] [CrossRef]
- Lee, K.C.; Weis, M. Charge traps in wide-bandgap semiconductors for power electronics applications. Inorganics 2024, 12, 257. [Google Scholar] [CrossRef]
- Kobayashi, E.; Boccard, M.; Jeangros, Q.; Rodkey, N.; Vresilovic, D.; Hessler-Wyser, A.; Döbeli, M.; Franta, D.; De Wolf, S.; Morales-Masis, M.; et al. Amorphous gallium oxide grown by low-temperature PECVD. J. Vac. Sci. Technol. A 2018, 36, 021518. [Google Scholar] [CrossRef]
- Mochalov, L.A.; Logunov, A.A.; Kudryashov, M.A. Plasma-chemical deposition of gallium oxide layers by oxidation of gallium in the hydrogen-oxygen mixture. J. Phys. Conf. Ser. 2021, 1967, 012037. [Google Scholar] [CrossRef]
- Mochalov, L.; Logunov, A.; Gogova, D.; Zelentsov, S.; Prokhorov, I.; Starostin, N.; Letnianchik, A.; Vorotyntsev, V. Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma. Opt. Quantum Electron. 2020, 52, 510. [Google Scholar] [CrossRef]
- Mochalov, L.; Logunov, A.; Kudryashov, M.; Prokhorov, I.; Sazanova, T.; Yunin, P.; Pryakhina, V.; Vorotuntsev, I.; Malyshev, V.; Polyakov, A.; et al. Heteroepitaxial growth of Ga2O3 thin films of various phase composition by oxidation of Ga in hydrogen-oxygen plasmas. ECS J. Solid State Sci. Technol. 2021, 10, 073002. [Google Scholar] [CrossRef]
- Mochalov, L.; Logunov, A.; Sazanova, T.; Kulikov, A.; Rafailov, E.; Zelentsov, S.; Vorotyntsev, V. Zinc oxide nanostructured materials prepared by PECVD as a platform for biosensors. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ponja, S.D.; Sathasivam, S.; Parkin, I.P.; Carmalt, C.J. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 2020, 10, 638. [Google Scholar] [CrossRef]
- Lin, W.; Ding, K.; Lin, Z.; Zhang, J.; Huang, J.; Huang, F. The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility. Cryst. Eng. Comm. 2011, 13, 3338–3341. [Google Scholar] [CrossRef]
- Taha, I.; Abdulhamid, Z.M.; Straubinger, R.; Emwas, A.-H.; Polychronopoulou, K.; Anjum, D.H. Ga-doped ZnO nanoparticles for enhanced CO2 gas sensing applications. Sci. Rep. 2024, 14, 29712. [Google Scholar] [CrossRef]
- Ramola, R.C.; Negi, S.; Singh, R.C.; Singh, F. Gas sensing response of ion beam irradiated Ga-doped ZnO thin films. Sci. Rep. 2022, 12, 22351. [Google Scholar] [CrossRef]
- Sheoran, H.; Kumar, V.; Singh, R. A comprehensive review on recent developments in ohmic and schottky contacts on Ga2O3 for device applications. ACS Appl. Electron. Mater. 2022, 4, 2589–2628. [Google Scholar] [CrossRef]
- Li, B.T.; Zhang, X.D.; Zhang, L.; Ma, Y.J.; Tang, W.B.; Chen, T.W.; Hu, Y.; Zhou, X.; Bian, C.X.; Zeng, C.H.; et al. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties. J. Semicond. 2023, 44, 061801. [Google Scholar] [CrossRef]
- Xu, G.W.; Wu, F.H.; Liu, Q.; Han, Z.; Hao, W.B.; Zhou, J.B.; Zhou, X.Z.; Yang, S.; Long, S.B. Vertical β-Ga2O3 power electronics. J. Semicond. 2023, 44, 070301. [Google Scholar] [CrossRef]
- Guo, D.; Qin, X.; Lv, M.; Shi, H.; Su, Y.; Yao, G.; Wang, S.; Li, C.; Li, P.; Tang, W. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films. Electron. Mater. Lett. 2017, 13, 483–488. [Google Scholar] [CrossRef]
- Yue, W.; Yan, J.L.; Wu, J.Y.; Zhang, L.Y. Structural and optical properties of Zn-doped β-Ga2O3 films. J. Semicond. 2012, 33, 073003. [Google Scholar] [CrossRef]
- Jesenovec, J.; Varley, J.; Karcher, S.E.; McCloy, J.S. Electronic and optical properties of Zn-doped β-Ga2O3 Czochralski single crystals. J. Appl. Phys. 2021, 129, 225702. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.-L.; Zhang, L.-Y.; Zhao, G. Electronic structures and optical properties of Zn-doped β-Ga2O3 with different doping sites. Chin. Phys. B 2012, 21, 127104. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, J.; Zhang, Y.; Li, T.; Ding, X. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N–Zn co-doped β-Ga2O3. Phys. B Condens. Matter 2012, 407, 1227–1231. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, H.; Song, Q.; Chen, Y.; Guo, S. Electronic structure and magnetic interactions in Zn-doped β-Ga2O3 from first-principles calculations. Comput. Mater. Sci. 2014, 87, 198–201. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Lyons, J.L.; Nepal, N.; Freitas, J.A., Jr.; Koehler, A.D.; Foster, G.M. Editors’ Choice-Review Theory and characterization of doping and defects in β-Ga2O3. ECS J. Solid State Sci. Technol. 2019, 8, Q3187. [Google Scholar] [CrossRef]
- Kabongo, G.L.; Mothudi, B.M.; Dhlamini, M.S. Advanced development of sustainable PECVD semitransparent photovoltaics: A review. Front. Mater. 2021, 8, 762030. [Google Scholar] [CrossRef]
- Vasanthi, V.; Kottaisamy, M.; Ramakrishnan, V. Near UV excitable warm white light emitting Zn doped γ-Ga2O3 nanoparticles for phosphor-converted white light emitting diode. Ceram. Int. 2019, 45, 2079–2087. [Google Scholar] [CrossRef]
- Wang, X.; Shen, S.; Jin, S.; Yang, J.; Li, M.; Wang, X.; Han, H.; Li, C. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting. Phys. Chem. Chem. Phys. 2013, 15, 19380–19386. [Google Scholar] [CrossRef]
- Du, F.; Yang, D.; Sun, Y.; Jiao, Y.; Teng, F.; Fan, H. Electrospun Zn-doped Ga2O3 nanofibers and their application in photodegrading rhodamine B dye. Ceram. Int. 2021, 47, 4963–4971. [Google Scholar] [CrossRef]
- Li, Y.; Trinchi, A.; Wlodarski, W.; Galatsis, K.; Kalantar-zadeh, K. Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. Sens. Actuators B Chem. 2003, 93, 431–434. [Google Scholar] [CrossRef]
- Su, Y.; Guo, D.; Ye, J.; Zhao, H.; Wang, Z.; Wang, S.; Li, P.; Tang, W. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity. J. Alloys Compd. 2019, 782, 299–303. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Yang, Y.; Pan, D.; Xing, Y.; Shi, X.; Xia, X.; Liang, H. Catalytic growth and characterization of single crystalline Zn doped p-type β-Ga2O3 nanowires. J. Alloys Compd. 2016, 687, 964–968. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, J.; Song, Z. Influence of Zn doping on the morphology and luminescence of Ga2O3 low-dimensional nanostructures. J. Lumin. 2020, 221, 117048. [Google Scholar] [CrossRef]
- Remple, C.; Huso, J.; Weber, M.H.; McCloy, J.S.; McCluskey, M.D. Electron irradiation effects on the optical properties of Hf- and Zn-doped β-Ga2O3. J. Appl. Phys. 2024, 135, 185702. [Google Scholar] [CrossRef]
- Tao, J.; Jiang, X.; Fan, A.; Hu, X.; Wang, P.; Dong, Z.; Wu, Y. Effect of rapid thermal annealing on the characteristics of micro Zn-Doped Ga2O3 films by using mixed atomic layer deposition. Nanomaterials 2025, 15, 499. [Google Scholar] [CrossRef]
- Dohy, D.; Lucazeau, G.; Revcolevschi, A. Raman spectra and valence force field of single-crystalline β-Ga2O3. J. Solid State Chem. 1982, 45, 180–192. [Google Scholar] [CrossRef]
- Kranert, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman tensor elements of β-Ga2O3. Sci. Rep. 2016, 6, 35964. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, S.; Yang, J.; Zhang, Y.; Bai, W.; Tang, X. Effects of Zn doping on optical properties of polycrystalline β-Ga2O3. Inorganics 2025, 13, 99. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, V.; Singh, R. Diameter tuning of β-Ga2O3 nanowires using chemical vapor deposition technique. Nanoscale Res. Lett. 2017, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Harbeke, G. Polycrystalline Semiconductors. Physical properties and applications. In Proceedings of the International School of Materials Science and Technology at the Ettore Majorana Centre, Erice, Italy, 1–15 July 1984. [Google Scholar] [CrossRef]
- Chikoidze, E.; Sartel, C.; Yamano, H.; Chi, Z.; Bouchez, G.; Jomard, F.; Sallet, V.; Guillot, G.; Boukheddaden, K.; Pérez-Tomás, A.; et al. Electrical properties of p-type Zn:Ga2O3 thin films. J. Vac. Sci. Technol. A 2022, 40, 043401. [Google Scholar] [CrossRef]
- Orton, J.W.; Powell, M.J. The Hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 1980, 43, 1263. [Google Scholar] [CrossRef]
- Seto, J.Y.W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 1975, 46, 5247–5254. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Luan, S.-Z. Co-Doping Effects on the Electronic and Optical Properties of β-Ga2O3: A First-Principles Investigation. Materials 2025, 18, 2005. [Google Scholar] [CrossRef]
- Tang, C.; Sun, J.; Lin, N.; Jis, Z.; Mu, W.; Tao, X.; Zhao, X. Electronic structure and optical property of metal-doped Ga2O3: A first principles study. RSC Adv. 2016, 6, 78322. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, M.; Cheng, M.; Lin, Q. Effects of Cu, Zn Doping on the Structural, Electronic, and Optical Properties of α-Ga2O3: First-Principles Calculations. Materials 2023, 16, 5317. [Google Scholar] [CrossRef]
- Ma, X.; Qi, N.; Zhang, M. First-principles investigation of Zn-doped β-Ga2O3: Electronic, optoelectronic, and thermodynamic properties. Phys. B Cond. Matter 2025, 715, 417557. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef]
- Gerasimov, G.N.; Gromov, V.F.; Ikim, M.I.; Ilegbusi, O.J.; Ozerin, S.A.; Trakhtenberg, L.I. Structure and gas-sensing properties of SnO2-In2O3 nanocomposites synthesized by impregnation method. Sens. Actuators B Chem. 2020, 320, 128406. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films. J. Phys. Chem. Solids. 2014, 75, 1201–1204. [Google Scholar] [CrossRef]
- Dallaev, R.; Sobola, D.; Tofel, P.; Škvarenina, Ľ.; Sedlák, P. Aluminum Nitride Nanofilms by Atomic Layer Deposition Using Alternative Precursors Hydrazinium Chloride and Triisobutylaluminum. Coatings 2020, 10, 954. [Google Scholar] [CrossRef]
- Sharma, N.; Ilango, S.; Dash, S.; Tyagi, A.K. X-ray photoelectron spectroscopy studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N2+ ions: Substrate temperature induced compositional variations. Thin Solid Films 2017, 636, 626–633. [Google Scholar] [CrossRef]
TZn (°C) | Dc (nm) |
---|---|
23 | 30.6 |
220 | 32.9 |
230 | 34.2 |
235 | 36.6 |
TZn (°C) | Elemental Concentrations (at.%) | ||
---|---|---|---|
Ga | O | Zn | |
23 | 40 | 60 | 0 |
220 | 36 | 60 | 4 |
230 | 35 | 59 | 6 |
235 | 34 | 58 | 8 |
TZn (°C) | Ra (nm) | Rq (nm) | Rz (nm) |
---|---|---|---|
23 | 0.88 | 1.12 | 6.47 |
220 | 15.17 | 18.93 | 55.04 |
230 | 23.82 | 30.51 | 101.67 |
235 | 88.84 | 106.23 | 249.55 |
TZn (°C) | ρ (Ohm × cm) | n (cm−3) | µ (cm2 × V−1 × s−1) |
---|---|---|---|
23 | 4.8 × 104 | 1 × 1015 | 0.11 |
220 | 8.3 × 106 | 5 × 1012 | 0.13 |
230 | 3.4 × 106 | 8 × 1012 | 0.22 |
235 | 2.9 × 106 | 1 × 1013 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochalov, L.A.; Telegin, S.V.; Almaev, A.V.; Slapovskaya, E.A.; Yunin, P.A. Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films. Micromachines 2025, 16, 954. https://doi.org/10.3390/mi16080954
Mochalov LA, Telegin SV, Almaev AV, Slapovskaya EA, Yunin PA. Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films. Micromachines. 2025; 16(8):954. https://doi.org/10.3390/mi16080954
Chicago/Turabian StyleMochalov, Leonid A., Sergey V. Telegin, Aleksei V. Almaev, Ekaterina A. Slapovskaya, and Pavel A. Yunin. 2025. "Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films" Micromachines 16, no. 8: 954. https://doi.org/10.3390/mi16080954
APA StyleMochalov, L. A., Telegin, S. V., Almaev, A. V., Slapovskaya, E. A., & Yunin, P. A. (2025). Structural and Electrically Conductive Properties of Plasma-Enhanced Chemical-Vapor-Deposited High-Resistivity Zn-Doped β-Ga2O3 Thin Films. Micromachines, 16(8), 954. https://doi.org/10.3390/mi16080954