Scalable Nanomanufacturing—A Review
Abstract
:1. Introduction
2. National Science Foundation (NSF) Scalable Nanomanufacturing
3. SNM Research Areas
3.1. Nano-Scale Materials
- Zero-D: Quantum Dots, Core-shell/Composite/Magnetic Nanoparticles.
- One-D: Nanowires, Carbon Nanotubes, Carbon Nanofibers, Cellulosic Nanocrystals.
- Two-D: Graphene, Transition Metal Dichalcogenides (TMDs), Bucky Tape.
- Three-D: Nanoporous Membranes, Aerogels, Nanostructured Materials.
3.2. Nano-Scale Processes
- Chemical/Thermal: Combustion, Plasma, and Hydrothermal Synthesis, Chemical Etching, Thermal Drawing, Microreactor.
- Vapor-based: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), Plasma Enhanced Chemical Vapor Deposition (PECVD), Atomic Layer Deposition (ALD), Molecular Layer Deposition (MLD).
- Solution-based: Wet and Slot Coating, Film and Laminate Casting, Colloids, Microfluidics, Ink-Jet Printing.
- Electrolytic: Electrospray, Electrophoresis, Electrospinning, Electroetching.
- Lithography/Deposition: Atomic Force Microscope (AFM), Nano Imprint Lithography (NIL), Laser Beam, Electron Beam Lithography (EBL), Ion-Beam, Direct Write.
- Assembly: Self-assembly, Directed-Assembly, Block Copolymer Self-Assembly.
- Bio Nanofabrication: DNA Templating.
- Mechanical: Exfoliation.
- 3D Nanofabrication: 3D Printing, Stereo-Lithography, Strain Engineering.
3.3. Potential Nano-Enabled Applications
- Environmental: Water Purification, Analytical Separation, Wastewater Treatment.
- Chemical: Catalysis, Gas Storage.
- Energy: Storage, Conversion, Harvesting, Batteries, Supercapacitors, Photovoltaics (PVs), Solar Cells.
- Electronics: Integrated Circuits (ICs), Flexible, Storage Memory, 3D Devices, Thin-Film Transistors (TFTs), Electromagnetic (EM) Shielding.
- Optoelectronics/Photonics: Imaging, Waveguides, Displays, Lighting, Metamaterials.
- Sensors: Biological, Chemical, Multiplexed.
- Structural: Nanocomposites, High-Strength, Light-Weighting, Packaging.
- Biomedical: Implants, Tissue Scaffolds, Diagnostics, Therapeutics, Probes.
- Sheets/Wires: Fibers, Cables, Filters, Membranes, Textiles, Paper, Fabric, Nonwovens.
- Templates: Masks, Photoresists.
4. Scaling-Up
- (1)
- Continuous Roll-to-Roll Top-down/Bottom-up Processes: printing, imprinting, self-assembly, deposition, coating, lamination.
- (2)
- Parallel, Large-area Top-down/Bottom-up Processes: lithography, direct-write, directed- and self-assembly.
- (3)
- Parallel, Large-area 3D Nanofabrication: nano 3D printing, 2-photon polymerization, nanoimprinting and self-assembly, strain engineering.
- (4)
- Large-area DNA Nanofabrication: templating using DNA.
- (5)
- Semi-continuous, Continuous or Parallel Chemical/Fluid/Thermal Techniques: microreactor, microfluidic, electrospray, electrospinning, fiber-drawing.
5. Scalable Nanopatterning
Scalable Nanopatterning Research at NSF
6. Manufacturing Challenges
7. Discussion
8. Conclusions
Conflicts of Interest
References
- Cooper, K.P.; Wachter, R.F. Nanomanufacturing: Path to implementing nanotechnology. Int. J. Nanomanuf. 2013, 9, 540–554. [Google Scholar] [CrossRef]
- Cooper, K.P. Controlling high-throughput manufacturing at the nano-scale. In Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VII; Postek, M.T., Orji, N.G., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 8819. [Google Scholar]
- Cooper, K.P. NSF nanomanufacturing program and its implications for measurement and control. In Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VII; Postek, M.T., Orji, N.G., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 8819. [Google Scholar]
- Scalable Nanomanufacturing (SNM) Solicitation. Available online: http://www.nsf.gov/pubs/2016/nsf16513/nsf16513.htm (accessed on 27 November 2016).
- NSI: Sustainable Nanomanufacturing—Creating the Industries of the Future. Available online: http://www.nano.gov/NSINanomanufacturing (accessed on 27 November 2016).
- Nanotechnologies—Vocabulary—Part 8: Nanomanufacturing Processes. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-8:ed-1:v1:en (accessed on 27 November 2016).
- Arshad, T.A.; Bonnecaze, R.T. Templated evaporative lithography for high throughput fabrication of nanopatterned films. Nanoscale 2013, 5, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Meissl, M.J.; Bonnecaze, R.T.; Sreenivasan, S.V. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics. Phys. Fluids 2013, 25, 092002. [Google Scholar] [CrossRef]
- Maher, M.J.; Rettner, C.T.; Bates, C.M.; Blachut, G.; Carlson, M.C.; Durand, W.J.; Ellison, C.J.; Sanders, D.P.; Cheng, J.Y.; Grant, W.C. Directed self-assembly of silicon-containing block copolymer thin films. ACS Appl. Mater. Interfaces 2015, 7, 3323–3328. [Google Scholar] [CrossRef] [PubMed]
- Muangnapoh, T.; Weldon, A.L.; Gilchrist, J.F. Enhanced monolayer deposition via vibration-assisted convective deposition. Appl. Phys. Lett. 2013, 103, 181603. [Google Scholar] [CrossRef]
- Li, X.; Gilchrist, J.F. Large-area nanoparticle films by continuous automated Langmuir-Blodgett assembly and deposition. Langmuir 2016, 32, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Ok, J.G.; Kwak, M.K.; Huard, C.M.; Guo, L.J. Photo roll lithography for continuous and scalable patterning, with application in transparent conductor fabrication. Adv. Mater. 2013, 25, 6554–6561. [Google Scholar] [CrossRef] [PubMed]
- Polsen, E.S.; McNerny, D.Q.; Viswanath, B.; Pattinson, S.W.; Hart, A.J. High speed roll-to-roll manufacturing of graphene using a concentric tube reactor. Sci. Rep. 2015, 5, 10257. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Gopinadhan, M.; Osuji, C.O. Directed self-assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867–3889. [Google Scholar] [CrossRef] [PubMed]
- Gopinadhan, M.; Deshmukh, P.; Choo, Y.; Majewski, P.W.; Bakajin, O.; Elimelech, M.; Kasi, R.M.; Osuji, C.O. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers. Adv. Mater. 2014, 26, 5148–5154. [Google Scholar] [CrossRef] [PubMed]
- Yersak, A.; Lee, Y.; Spencer, J.; Groner, M. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness. J. Vacuum Sci. Technol. A 2014, 32. [Google Scholar] [CrossRef]
- Ghosh, S.; Yang, R.; Kaumeyer, M.; Zorman, C.A.; Rowan, S.J.; Feng, P.X.L.; Sankaran, R.M. Fabrication of electrically-conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl. Mater. Interfaces 2014, 6, 3099–3104. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; He, P.; Liu, L.; Feng, T.; Fisher, T.S. Plasma-grown graphene petals templating Ni-Co-Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J. Mater. Chem. A 2015, 3, 22940–22948. [Google Scholar] [CrossRef]
- Choi, C.H.; Levin, J.B.; Chang, C.H. Continuous formation of seed layer and vertical ZnO nanowire array enabled by tailored reaction kinetics in a microreactor. CrystEngComm 2016, 18, 8645–8652. [Google Scholar] [CrossRef]
- Huang, Y.R.; Jiang, Y.; Hor, J.L.; Gupta, R.; Zhang, L.; Stebe, K.J.; Feng, G.; Turner, K.T.; Lee, D. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI). Nanoscale 2015, 7, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.F.; Stebe, K.J.; Lee, D. Continuous fabrication of hierarchical and asymmetric bijel microparticles, fibers and membranes by solvent transfer-induced phase separation (STRIPS). Adv. Mater. 2015, 27, 7065–7071. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Brownell, L.V.; Yan, L.; You, W. Morphological effects on the small-molecule-based solution-processed organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 15767–15773. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.E.; Rathmell, A.R.; Yan, L.; Ye, S.; Flowers, P.F.; You, W.; Wiley, B.J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Fang, N. Micro 3D printing using a digital projector and its application in the study of soft materials. J. Vis. Exp. 2012, 69, e4457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, Y.; Zhao, Y.; Fang, N.; Huang, T.J. A reconfigurable plasmofluidic lens. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Traverso, L.M.; Srisungsitthisunti, P.; Xu, X.; Moon, E.E. Optical nanolithography with λ/15 resolution using bowtie aperture array. Appl. Phys. A 2014, 117, 307–311. [Google Scholar] [CrossRef]
- Williamson, L.D.; Seidel, R.N.; Chen, X.; Suh, H.S.; Delgadillo, P.R.; Gronheid, R.; Nealey, P.F. Three-tone chemical patterns for block copolymer directed self-assembly. ACS Appl. Mater. Interfaces 2016, 8, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
- Hannon, A.F.; Gotrik, K.W.; Ross, C.A.; Alexander-Katz, A. Inverse design of topographical templates for directed self-assembly of block copolymers. ACS Macro Lett. 2013, 2, 251–255. [Google Scholar] [CrossRef]
- Fourkas, J.T.; Tomova, Z. Multicolor, visible-light nanolithography (invited). SPIE Opt. Microlithogr. 2015, 9426. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Q.; Kamyab, L.; Rostami, A.; Capolino, F.; Boyraz, O. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography. Opt. Express 2015, 23, 6780–6786. [Google Scholar] [CrossRef] [PubMed]
- Oller, D.; Fernandes, G.E.; Stylianos, S.; Xu, J.; Pacifici, D. Scalable physical coloration. Mater. Res. Bull. 2016, 83, 556–562. [Google Scholar] [CrossRef]
- Meng, Y.; Jiang, J.; Anthamatten, M. Body temperature triggered shape-memory polymers with high elastic energy storage capacity. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1397–1404. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, C.W.; Shestopalov, A.A. High-resolution organic light-emitting diodes patterned via contact printing. ACS Appl. Mater. Interfaces 2016, 8, 16809–16815. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, Y.; Wang, C.; Lee, W.; Dong, B.; Sun, C.; Odom, T.; Chen, W. Characterization and design of functional quasi-random nanostructured materials using spectral density function. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences & Design Automation Conference, Charlotte, NC, USA, 21–24 August 2016.
- Hribar, K.; Soman, P.; Warner, J.; Chung, P.; Chen, S.C. Light-based direct-write of 3D functional biomaterials. Lab Chip 2014, 14, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Soman, P.; Chung, P.H.; Zhang, A.; Chen, S.C. Microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 2013, 110, 3038–3047. [Google Scholar] [CrossRef] [PubMed]
- Grogan, S.P.; Chung, P.H.; Soman, P.; Chen, P.; Lotz, M.K.; Chen, S.C.; D’Lima, D. Digital-micromirror-device projection printing system for meniscus tissue engineering. Acta Biomater. 2013, 9, 7218–7226. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Kwon, H.J.; Paeng, D.; Yeo, J.; Elhadj, S.; Grigoropoulos, C.P. Facile fabrication of superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal. Nanotechnology 2016, 27, 145604. [Google Scholar] [CrossRef] [PubMed]
- Wohlgamuth, C.H.; McWilliams, M.A.; Slinker, J.D. DNA as a molecular wire: Distance and sequence dependence. Anal. Chem. 2013, 85, 8634–8640. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Ong, L.L.; Sun, W.; Song, J.; Dong, M.; Shih, W.M.; Yin, P. DNA brick crystals with prescribed depths. Nat. Chem. 2014, 6, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, S.; Klein, W.P.; Onodera, C.; Rapp, B.; Fores-Estrada, J.; Lindau, E.; Snowball, L.; Sam, J.T.; Padilla, J.E.; Lee, J.; et al. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites. Nanoscale 2014, 6, 13298–13938. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, K. Scalable Nanomanufacturing—A Review. Micromachines 2017, 8, 20. https://doi.org/10.3390/mi8010020
Cooper K. Scalable Nanomanufacturing—A Review. Micromachines. 2017; 8(1):20. https://doi.org/10.3390/mi8010020
Chicago/Turabian StyleCooper, Khershed. 2017. "Scalable Nanomanufacturing—A Review" Micromachines 8, no. 1: 20. https://doi.org/10.3390/mi8010020