A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. The FBAR Sensor Chip
- (a)
- First, 1.5 μm silicon nitride film was deposited on the silicon substrate by low pressure chemical vapor deposition (LPCVD).
- (b)
- Pt film for bottom electrode and resistor heater was deposited on top surface of the silicon nitride film by physical vapor deposition (PVD) and patterned.
- (c)
- Then 1.2 μm ZnO film was sputtered on the top surface of the chip and patterned.
- (d)
- Pt film for top electrode and resistor temperature sensor was deposited on surface of the ZnO film and patterned.
- (e)
- On the back of the chip, silicon nitride film in suspending area was etched by reactive ion etching (RIE).
- (f)
- With the patterned silicon nitride film as mask, silicon was etched from the back by deep reactive ion etch (DRIE), until it reached the top silicon nitride film.
2.2. The Oscillator Circuit
2.3. Methods
3. Results and Discussion
3.1. Frequency Signal of the Sensor Sample
3.2. Response to Humidity
3.3. Response to Ethanol
3.4. Oscillator Circuit Effect on the Response
3.4.1. Sensitivity of the Sensor
3.4.2. Response to Temperature
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Campanella, H.; Uranga, A.; Romano-Rodriguez, A.; Montserrat, J.; Abadal, G.; Barniol, N.; Esteve, J. Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR): Area and mass location aspects. J. Sens. Actuators A 2008, 142, 322–328. [Google Scholar] [CrossRef]
- He, X.L.; Garcia-Gancedo, L.; Jin, P.C.; Zhou, J.; Wang, W.B.; Dong, S.R.; Luo, J.K.; Flewitt, A.J.; Milne, W.I. Film bulk acoustic resonator pressure sensor with self temperature reference. J. Micromech. Microeng. 2012, 22, 125005. [Google Scholar] [CrossRef]
- García-Gancedo, L.; Pedrós, J.; Zhao, X.B.; Ashley, G.M.; Flewitt, A.J.; Milnea, W.I.; Ford, C.J.B.; Lu, J.R.; Luo, J.K. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading. Biosen. Bioelectron. 2012, 38, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Qiu, X.T.; Chen, S.J.; Pang, W.; Zhang, H.; Shi, J.; Yu, H.Y. ZnO based film bulk acoustic resonator as infrared sensor. Thin Solid Films 2011, 519, 6144–6147. [Google Scholar] [CrossRef]
- Qiu, X.T.; Tang, R.; Zhu, J.; Oiler, J.; Yu, C.J.; Wang, Z.Y.; Yu, H.Y. The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator. Sens. Actuators B 2011, 151, 360–364. [Google Scholar] [CrossRef]
- Chen, X.P.; Chen, X.D.; Li, N.; Ding, X.; Zhao, X. A QCM humidity sensors based on GO/nafion composite films with enhanced sensitivity. IEEE Sens. J. 2016, 16, 8874–8883. [Google Scholar] [CrossRef]
- Tai, H.L.; Zhen, Y.; Liu, C.H.; Ye, Z.B.; Xie, G.Z.; Du, X.S.; Jiang, Y.D. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sens. Actuators B 2016, 230, 501–509. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.C.; Li, H.M.; Zhu, Y.H.; Xu, J.Q. Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B 2014, 193, 320–325. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.D.; Li, X.Y.; Chen, X.P.; Li, N. Investigation of the stability of QCM humidity sensor using grapheme oxide as sensing films. Sens. Actuators B 2014, 191, 779–783. [Google Scholar] [CrossRef]
- Kruglenko, I.; Shirshov, Y.; Burlachenko, J.; Savchenko, A.; Kravchenko, S.; Manera, M.G.; Rella, R. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films. Talanta 2010, 82, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, H.; Lin, Y.H.; Zhou, Y.; Wu, Y.P. Highly sensitive humidity sensor based on quartz crystal microbalance coated with ZnO colloid spheres. Sens. Actuators B 2013, 177, 1083–1088. [Google Scholar] [CrossRef]
- Giangu, I.; Buiculescu, V.; Konstantinidis, G.; Szaciáowski, K.; Stefanescu, A.; Bechtold, F.; Pilarczyk, K.; Stavrinidis, A.; Kwolek, P.; Stavrinidis, G.; et al. Acoustic wave sensing devices and their LTCC Packaging. In Proceedings of the 2014 International IEEE Semiconductor Conference, Sinaia, Romania, 13–15 October 2014; pp. 147–150.
- Johnston, M.L.; Kymissis, I.; Shepard, K.L. FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sens. J. 2010, 10, 1042–1047. [Google Scholar] [CrossRef]
- Kim, I.D.; Rothschild, A.; Tuller, H.L. Advances and new directions in gas-sensing devices. Acta Mater. 2013, 61, 974–1000. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Vásquez Quintero, A.; Molina-Lopez, F.; Mattana, G.; Briand, D.; de Rooij, N.F. Self-standing printed humidity sensor with thermo-calibration and integrated heater. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June 2013; pp. 838–841.
- Lu, Y.; Chang, Y.; Tang, N.; Qu, H.M.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.H.; Duan, X.X. Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl. Mater. Interfaces 2015, 7, 17893–17903. [Google Scholar] [CrossRef] [PubMed]
- Asar, N.; Erol, A.; Okur, S.; Arikan, M.C. Morphology-dependent humidity adsorption kinetics of ZnO nanostructures. Sens. Actuators A 2012, 187, 37–42. [Google Scholar] [CrossRef]
- Korposh, S.; Selyanchyn, R.; Lee, S.W. Nano-assembled thin film gas sensors. IV. Mass-sensitive monitoring of humidity using quartz crystal microbalance (QCM) electrodes. Sens. Actuators B 2010, 147, 599–606. [Google Scholar] [CrossRef]
- Yao, Y.; Xue, Y.J. Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors. Sens. Actuators B 2016, 222, 755–762. [Google Scholar] [CrossRef]
- Tang, Y.L.; Li, Z.J.; Ma, J.Y.; Wang, L.; Yang, J.; Du, B.; Yu, Q.K.; Zu, X.T. Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol–gel SiO2 films: Investigations on the sensing property and mechanism. Sens. Actuators B 2015, 215, 283–291. [Google Scholar] [CrossRef]
- Xuan, W.P.; Chen, J.K.; He, X.L.; Wang, W.B.; Dong, S.R.; Luo, J.K. Flexible surface acoustic wave humidity sensor with on chip temperature compensation. Procedia Eng. 2015, 120, 364–367. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Wang, L.L.; Cai, D.P.; Liu, B.; Wang, D.; Li, Q.H.; Wang, T.H. Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor. Sens. Actuators B 2016, 223, 730–737. [Google Scholar] [CrossRef]
- Qiu, X.T.; Zhu, J.; Oiler, J.; Yu, C.J.; Wang, Z.Y.; Yu, H.Y. Film Bulk Acoustic-wave Resonator (FBAR) Based Humidity Sensor. In Proceedings of the IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 20–23 January 2010; pp. 445–449.
- Zhang, M.Y.; Du, L.D.; Fang, Z.; Zhao, Z. Micro through-hole array in top electrode of film bulk acoustic resonator for sensitivity improving as humidity sensor. Procedia Eng. 2015, 120, 663–666. [Google Scholar] [CrossRef]
- Campanell, H.; Nouet, P.; Paco, P.D.; Uranga, A.; Barniol, N.; Esteve, J. Automated on-wafer characterization in micro-machined resonators: Towards an integrated test vehicle for bulk acoustic wave resonators (FBAR). In Proceedings of the IEEE International Conference on Microelectronic Test Structures, Tokyo, Japan, 19–22 March 2007.
- Khanna, A.P.S.; Gane, E.; Chong, T.; Ko, H.; Bradley, P.; Ruby, R.; Larson, J.D., III. A Film Bulk Acoustic Resonator (FBAR) L band low noise oscillator for digital communications. In Proceedings of the 32nd European Microwave Conference, Milan, Italy, 23–26 September 2002.
- Xu, W.C.; Zhang, X.; Choi, S.; Chae, J. A high-quality-factor film bulk acoustic resonator in liquid for biosensing applications. J. Microelectromech. Syst. 2011, 20, 213–220. [Google Scholar] [CrossRef]
- Esashi, M.; Tanaka, S. Stacked Integration of MEMS on LSI. Micromachines 2016, 7, 137. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.C.; Chae, J. Temperature effects on a high Q FBAR in liquid. Sens. Actuators A 2011, 166, 264–268. [Google Scholar] [CrossRef]
- Laurenti, M.; Perrone, D.; Verna, A.; Pirri, C.F.; Chiolerio, A. Development of a flexible lead-free piezoelectric transducer for health monitoring in the space environment. Micromachines 2015, 6, 1729–1744. [Google Scholar] [CrossRef]
- Raymand, D.; Duin, A.C.T.; Spångberg, D.; Goddard, W.A., III; Hermansson, K. Water adsorption on stepped ZnO surfaces from MD simulation. Surf. Sci. 2010, 604, 741–752. [Google Scholar] [CrossRef]
- Meyer, B.; Rabaa, H.; Marx, D. Water adsorption on ZnO(1010): From single molecules to partially dissociated monolayers. Phys. Chem. Chem. Phys. 2006, 8, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qiu, X.; Shi, J.; Yu, H. Room Temperature Ozone Detection using ZnO based Film Bulk Acoustic Resonator (FBAR). J. Electrochem. Soc. 2012, 159, 13–16. [Google Scholar] [CrossRef]
- Lupan, O.; Chai, G.Y.; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 2008, 85, 2220–2225. [Google Scholar] [CrossRef]
- Hongsith, N.; Choopun, S.; Mangkorntong, P.; Mangkorntong, N. Zinc oxide nanobelts by RF sputtering for ethanol sensor. Physica E 2007, 39, 53–56. [Google Scholar]
- Yeh, P.J.; Kizhakkedathu, J.N.; Madden, J.D.; Chiao, M. Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications. Colloids Surf. B Biointerfaces 2007, 59, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kropelnicki, P.; Muckensturm, K.M.; Mu, X.J.; Randles, A.B.; Cai, H.; Ang, W.C.; Tsai, J.M.; Vogt, H. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor. J. Micromech. Microeng. 2013, 23, 085018. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Du, L.; Fang, Z.; Zhao, Z. A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application. Micromachines 2017, 8, 25. https://doi.org/10.3390/mi8010025
Zhang M, Du L, Fang Z, Zhao Z. A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application. Micromachines. 2017; 8(1):25. https://doi.org/10.3390/mi8010025
Chicago/Turabian StyleZhang, Mengying, Lidong Du, Zhen Fang, and Zhan Zhao. 2017. "A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application" Micromachines 8, no. 1: 25. https://doi.org/10.3390/mi8010025
APA StyleZhang, M., Du, L., Fang, Z., & Zhao, Z. (2017). A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application. Micromachines, 8(1), 25. https://doi.org/10.3390/mi8010025