Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices
References
- Berthelot, R.; Doxsee, K.; Neethirajan, S. Electroceutical approach for impairing the motility of pathogenic bacterium using a microfluidic platform. Micromachines 2017, 8, 207. [Google Scholar] [CrossRef]
- Khashayar, P.; Amoabediny, G.; Larijani, B.; Hosseini, M.; Verplancke, R.; Schaubroeck, D.; Van Put, S.; Razi, F.; De Keersmaecker, M.; Adriaens, A.; et al. A multiplexed microfluidic platform for bone marker measurement: A proof-of-concept. Micromachines 2017, 8, 133. [Google Scholar] [CrossRef]
- Kinahan, D.J.; Renou, M.; Kurzbuch, D.; Kilcawley, N.A.; Bailey, E.; Glynn, M.T.; McDonagh, C.; Ducrée, J. Baking powder actuated centrifugo-pneumatic valving for automation of multi-step bioassays. Micromachines 2016, 7, 175. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Liu, J. Biomaterials meet microfluidics: from synthesis technologies to biological applications. Micromachines 2017, 8, 255. [Google Scholar] [CrossRef]
- Higashi, K.; Ogawa, M.; Fujimoto, K.; Onoe, H.; Miki, N. Hollow hydrogel microfiber encapsulating microorganisms for mass-cultivation in open systems. Micromachines 2017, 8, 176. [Google Scholar] [CrossRef]
- Lee, H.; Koh, D.; Xu, L.; Row, S.; Andreadis, S.T.; Oh, K.W. A simple method for fabrication of microstructures using a PDMS stamp. Micromachines 2016, 7, 173. [Google Scholar] [CrossRef]
- Azzopardi, C.-L.; Lacour, V.; Manceau, J.-F.; Barthès, M.; Bonnet, D.; Chollet, F.; Leblois, T. A fluidic interface with high flow uniformity for reusable large area resonant biosensors. Micromachines 2017, 8, 308. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Du, W.; Xia, Y.; Wang, D.; Zhao, G.; Chu, J. The optimization of a microfluidic CTC filtering chip by simulation. Micromachines 2017, 8, 79. [Google Scholar] [CrossRef]
- Mizoue, K.; Teramura, K.; Tsai, C.-H.D.; Kaneko, M. Transfer function of macro-micro manipulation on a PDMS microfluidic chip. Micromachines 2017, 8, 80. [Google Scholar] [CrossRef]
- Horade, M.; Tsai, C.-H.D.; Ito, H.; Kaneko, M. Red blood cell responses during a long-standing load in a microfluidic constriction. Micromachines 2017, 8, 100. [Google Scholar] [CrossRef]
- Tsai, C.-H.D.; Tanaka, J.; Kaneko, M.; Horade, M.; Ito, H.; Taniguchi, T.; Ohtani, T.; Sakata, Y. An on-chip RBC deformability checker significantly improves velocity-deformation correlation. Micromachines 2016, 7, 176. [Google Scholar] [CrossRef]
- Basha, I.H.K.; Ho, E.T.W.; Yousuff, C.M.; Hamid, N.H.B. Towards multiplex molecular diagnosis—A review of microfluidic genomics technologies. Micromachines 2017, 8, 266. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.W. Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices. Micromachines 2017, 8, 343. https://doi.org/10.3390/mi8120343
Oh KW. Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices. Micromachines. 2017; 8(12):343. https://doi.org/10.3390/mi8120343
Chicago/Turabian StyleOh, Kwang W. 2017. "Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices" Micromachines 8, no. 12: 343. https://doi.org/10.3390/mi8120343
APA StyleOh, K. W. (2017). Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices. Micromachines, 8(12), 343. https://doi.org/10.3390/mi8120343