Lithium Niobate Micromachining for the Fabrication of Microfluidic Droplet Generators
Abstract
:1. Introduction
2. Experimental
2.1. Microfluidic Circuit Realization and Characterization
2.2. Microfluidic Characterization Set-Up
3. Results and Discussion
Droplet Generator Performances and Droplet Length Scaling Relation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lei, K.F. Microfluidic Systems for Diagnostic Applications A Review. J. Lab. Autom. 2012, 17, 330–347. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G. Point-of-care platforms. Ann. Rev. Anal. Chem. 2014, 7, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Song, H.; Sung, J.H.; Kim, D.; Kim, K. Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress. Biosens. Bioelectron. 2016, 77, 227–236. [Google Scholar] [CrossRef] [PubMed]
- McMullen, J.P.; Jensen, K.F. Integrated microreactors for reaction automation: New approaches to reaction development. Ann. Rev. Anal. Chem. 2010, 3, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Abgrall, P.; Gue, A. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review. J. Micromech. Microeng. 2007, 17, R15. [Google Scholar] [CrossRef]
- Stone, H.A.; Stroock, A.D.; Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36, 381–411. [Google Scholar]
- Stroock, A.D.; Whitesides, G.M. Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis 2002, 23, 3461–3473. [Google Scholar]
- Whitesides, G.M.; Stroock, A.D. Flexible methods for microfluidics. Phys. Today 2001, 54, 42–48. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Ali, M.; Anand, P.; Agrawal, V.V.; John, R.; Maji, S.; Malhotra, B.D. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnol. J. 2013, 8, 1267–1279. [Google Scholar]
- Korczyk, P.M.; Derzsi, L.; Jakieła, S.; Garstecki, P. Microfluidic traps for hard-wired operations on droplets. Lab Chip 2013, 13, 4096–4102. [Google Scholar] [CrossRef] [PubMed]
- Faustino, V.; Catarino, S.O.; Lima, R.; Minas, G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016, 49, 2280–2292. [Google Scholar] [CrossRef] [PubMed]
- Regehr, K.J.; Domenech, M.; Koepsel, J.T.; Carver, K.C.; Ellison-Zelski, S.J.; Murphy, W.L.; Schuler, L.A.; Alarid, E.T.; Beebe, D.J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9, 2132–2139. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tice, J.D.; Roach, L.S.; Ismagilov, R.F. A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-ray Diffraction. Angew. Chem. Int. Ed. 2004, 43, 2508–2511. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.E.; Kota, N.; Kim, Y.; Wang, Y.; Stolz, D.B.; LeDuc, P.R.; Ozdoganlar, O.B. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 2011, 11, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, C.; Taylor, H.; Avram, M.; Miao, J.; Franssila, S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012, 6, 016505. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, K.; Sudani, N.T.B. A high-repetition-rate femtosecond laser for thin silicon wafer dicing. J. Micromech. Microeng. 2008, 18, 075032–075039. [Google Scholar] [CrossRef]
- Osellame, R.; Cerullo, G.R.R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials; Springer Science & Business Media: New York, NY, USA, 2012; Volume 123. [Google Scholar]
- Osellame, R.; Hoekstra, H.J.; Cerullo, G.; Pollnau, M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011, 5, 442–463. [Google Scholar] [CrossRef]
- Du, X.Y.; Swanwick, M.E.; Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Lee, D.S.; Maeng, S.; Milne, W.I. Surface acoustic wave induced streaming and pumping in 128∘ y-cut LiNbO3 for microfluidic applications. J. Micromech. Microeng. 2009, 19, 35016. [Google Scholar] [CrossRef]
- Yeo, L.Y.; Friend, J.R. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 2009, 3, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Brunet, P.; Baudoin, M.; Matar, O.B.; Zoueshtiagh, F. Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A quantitative study. Phys. Rev. E 2010, 81, 036315. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.K.; Lin, J.L.; Sung, W.C.; Chen, S.H.; Lee, G.B. Active micro-mixers using surface acoustic waves on y-cut 128∘ LiNbO3. J. Micromech. Microeng. 2006, 16, 539. [Google Scholar] [CrossRef]
- Esseling, M.; Zaltron, A.; Argiolas, N.; Nava, G.; Imbrock, J.; Cristiani, I.; Sada, C.; Denz, C. Highly reduced iron-doped lithium niobate for optoelectronic tweezers. Appl. Phys. B Lasers Opt. 2013, 113, 191–197. [Google Scholar] [CrossRef]
- Esseling, M.; Zaltron, A.; Sada, C.; Denz, C. Charge sensor and particle trap based on z-cut lithium niobate. Appl. Phys. Lett. 2013, 103, 061115. [Google Scholar] [CrossRef]
- Esseling, M.; Zaltron, A.; Horn, W.; Denz, C. Optofluidic droplet router. Laser Photonics Rev. 2015, 9, 98–104. [Google Scholar] [CrossRef]
- Lucchetti, L.; Kushnir, K.; Ciciulla, F.; Zaltron, A.; Bettella, G.; Pozza, G.; Sada, C.; Reshetnyak, V.; Simoni, F. All-optical phase shifter with photovoltaic liquid crystal cell. Proc. SPIE 2016, 9940, 99400G–99400G-7. [Google Scholar]
- Sohler, W.; Hu, H.; Ricken, R.; Quiring, V.; Vannahme, C.; Herrmann, H.; Büchter, D.; Reza, S.; Grundkötter, W.; Orlov, S. Integrated optical devices in lithium niobate. Opt. Photonics News 2008, 19, 24–31. [Google Scholar]
- Malshe, A.; Deshpande, D.; Stach, E.; Rajurkar, K.; Alexander, D. Investigation of femtosecond laser asisted micromachining of lithium niobate. Manuf. Technol. 2004, 53, 187–190. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Zhang, Y.; Xia, Y. Ablation Induced by single anf multi-femtosecond laser pulses in lithium niobate. Laser Phys. 2007, 17, 1378–1381. [Google Scholar] [CrossRef]
- Chauvet, M.; Al Fares, L.; Devaux, F. Self-trapped beams for fabrication of optofluidic chips. Proc. SPIE 2012, 8434, 84340Q–84340Q-7. [Google Scholar]
- Chauvet, M.; Al Fares, L.; Guichardaz, B.; Devaux, F.; Ballandras, S. Integrated optofluidic index sensor based on self-trapped beams in LiNbO3. Appl. Phys. Lett. 2012, 101, 181104. [Google Scholar] [CrossRef]
- Pozza, G.; Kroesen, S.; Bettella, G.; Zaltron, A.; Esseling, M.; Mistura, G.; Sartori, P.; Chiarello, E.; Pierno, M.; Denz, C. T-junction droplet generator realised in lithium niobate crystals by laser ablation. Optofluid. Microfluid. Nanofluid. 2014, 1, 1. [Google Scholar] [CrossRef]
- El Fissi, L.; Xhurdebise, V.; Francis, L.A. Effects of Laser Operating Parameters on Piezoelectric Substrates Micromachining with Picosecond Laser. Micromachines 2015, 6, 19–31. [Google Scholar] [CrossRef]
- Huo, D.; Choong, Z.J.; Shi, Y.; Hedley, J.; Zhao, Y. Diamond micro-milling of lithium niobate for sensing applications. J. Micromech. Microeng. 2016, 26, 095005. [Google Scholar] [CrossRef]
- Farson, D.F.; Choi, H.W.; Zimmerman, B.; Steach, J.K.; Chalmers, J.J.; Olesik, S.V.; Lee, L.J. Femtosecond laser micromachining of dielectric materials for biomedical applications. J. Micromech. Microeng. 2008, 18, 035020. [Google Scholar] [CrossRef]
- Menech, M.D.; Garstecki, P.; Jousse, F.; Stone, H.A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 2008, 595, 141–161. [Google Scholar] [CrossRef]
- Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 2006, 6, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.H.; Li, S.W.; Tan, J.; Luo, G.S. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluid. Nanofluid. 2008, 5, 711–717. [Google Scholar] [CrossRef]
- Christopher, G.F.; Noharuddin, N.N.; Taylor, J.A.; Anna, S.L. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 78, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Seo, M.; Xu, S.; Lewis, P.C.; Mok, M.; Kumacheva, E.; Whitesides, G.M.; Garstecki, P.; Stone, H.A. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluid. Nanofluid. 2008, 5, 585–594. [Google Scholar] [CrossRef]
- Van Steijn, V.; Kleijn, C.R.; Kreutzer, M.T. Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 2010, 10, 2513–2518. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Novak, R.; Shuga, J.; Smith, M.T.; Mathies, R.A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 2010, 82, 3183–3190. [Google Scholar] [CrossRef] [PubMed]
- Bettella, G.; Pozza, G.; Zaltron, A.; Ciampolillo, M.V.; Argiolas, N.; Sada, C.; Chauvet, M.; Guichardaz, B. Integrated opto-microfluidics platforms in lithium niobate crystals for sensing applications. Proc. SPIE 2015, 9365, 936517–936517-8. [Google Scholar]
Technique | Fabrication Time | [nm] | Droplet Length Dispersion | |
---|---|---|---|---|
Bottom | Side | |||
Laser Ablation | 3h | 192 ± 34 | 65 ± 4 | <3% |
Dicing Saw | Few Minutes | 23 ± 7 | 8.5 ± 0.9 | <5% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettella, G.; Pozza, G.; Kroesen, S.; Zamboni, R.; Baggio, E.; Montevecchi, C.; Zaltron, A.; Gauthier-Manuel, L.; Mistura, G.; Furlan, C.; et al. Lithium Niobate Micromachining for the Fabrication of Microfluidic Droplet Generators. Micromachines 2017, 8, 185. https://doi.org/10.3390/mi8060185
Bettella G, Pozza G, Kroesen S, Zamboni R, Baggio E, Montevecchi C, Zaltron A, Gauthier-Manuel L, Mistura G, Furlan C, et al. Lithium Niobate Micromachining for the Fabrication of Microfluidic Droplet Generators. Micromachines. 2017; 8(6):185. https://doi.org/10.3390/mi8060185
Chicago/Turabian StyleBettella, Giacomo, Gianluca Pozza, Sebastian Kroesen, Riccardo Zamboni, Enrico Baggio, Carlo Montevecchi, Annamaria Zaltron, Ludovic Gauthier-Manuel, Giampaolo Mistura, Claudio Furlan, and et al. 2017. "Lithium Niobate Micromachining for the Fabrication of Microfluidic Droplet Generators" Micromachines 8, no. 6: 185. https://doi.org/10.3390/mi8060185
APA StyleBettella, G., Pozza, G., Kroesen, S., Zamboni, R., Baggio, E., Montevecchi, C., Zaltron, A., Gauthier-Manuel, L., Mistura, G., Furlan, C., Chauvet, M., Denz, C., & Sada, C. (2017). Lithium Niobate Micromachining for the Fabrication of Microfluidic Droplet Generators. Micromachines, 8(6), 185. https://doi.org/10.3390/mi8060185