Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation
Abstract
:1. Introduction
2. Cooling Device Design
2.1. Cooling Mechanism
2.2. Peltier Modeling
2.3. Full System Modeling
3. Experimental Performance Assessment
3.1. Model Validation
3.2. Thermal Modulation Assessment In Vivo
4. Ambulatory Miniaturized Thermal Modulators
4.1. Miniaturized Thermal Modulator
4.2. Microcooler Performance Assessment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Accuray Research LLP. Implantable Medical Devices Market Analysis and Trends-Product, Material—Forecast to 2025; Report; PR Newswire: New York City, NY, USA, October, 2016. [Google Scholar]
- Anacleto, P.; Mendes, P.M.; Gultepe, E.; Gracias, D.H. 3D small antenna for energy harvesting applications on implantable micro-devices. In Proceedings of the 2012 Loughborough Antennas and Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012; pp. 3–6. [Google Scholar]
- Luan, S.; Williams, I.; Nikolic, K.; Constandinou, T.G. Neuromodulation: Present and emerging methods. Front. Neuroeng. 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gofeld, M. New horizons in neuromodulation. Curr. Pain Headache Rep. 2014, 18, 397. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.; Frost, L. Effect of Hypothermia on Epileptifonn Activity in the Primate Temporal Lobe. Science 1956, 124, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Nofzinger, E.A.; Park, A. Method and Apparatus of Noninvasive, Regional Brain Thermal Stimuli for the Treatment of Neurological Disorders. U.S. Patent 9492313 B2, 12 August 2012. [Google Scholar]
- Wu, T.; Grotta, J.C. Hypothermia for acute ischaemic stroke. Lancet Neurol. 2013, 12, 275–284. [Google Scholar] [CrossRef]
- Thoresen, M.; Whitelaw, A. Therapeutic hypothermia for hypoxic-ischaemic encephalopathy in the newborn infant. Curr. Opin. Neurol. 2005, 18, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Lang, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Duffy, D.W.; Morley, R.E.; Rothman, S.M. Neocortical seizure termination by focal cooling: Temperature dependence and automated seizure detection. Epilepsia 2002, 43, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Oku, T.; Fujii, M.; Tanaka, N.; Imoto, H.; Uchiyama, J.; Oka, F.; Kunitsugu, I.; Fujioka, H.; Nomura, S.; Kajiwara, K.; et al. The influence of focal brain cooling on neurophysiopathology: Validation for clinical application. J. Neurosurg. 2009, 110, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hoopes, P.J.; Hanson, M. Thermal dose requirement for tissue effect: Experimental and clinical findings. Proc. SPIE Int. Soc. Opt. Eng. 2003, 4954, 37. [Google Scholar] [CrossRef] [PubMed]
- Geurts, M.; Petersson, J.; Brizzi, M.; Olsson-Hau, S.; Luijckx, G.J.; Algra, A.; Dippel, D.W.; Kappelle, L.J.; van der Worp, H.B. COOLIST (Cooling for Ischemic Stroke Trial). Stroke 2017, 48, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Rothman, S.M. The Therapeutic Potential of Focal Cooling for Neocortical Epilepsy. Neurotherapeutics 2009, 6, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Rothman, S.; Yang, X.-F. Local Cooling: A Therapy for Intractable Neocortical Epilepsy. Epilepsy Curr. 2003, 3, 153–156. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, R.; Eastman, C.L.; Darvas, F.; Fender, J.S.; Verley, D.R.; Farin, F.M.; Wilkerson, H.W.; Temkin, N.R.; Miller, J.W.; Ojemann, J.; et al. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann. Neurol. 2013, 73, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Ahiska, R.; Yavuz, A.H.; Kaymaz, M.; Güler, I. Control of a thermoelectric brain cooler by adaptive neuro-fuzzy inference system. Instrum. Sci. Technol. 2008, 36, 636–655. [Google Scholar] [CrossRef]
- Fisher, R.S. Therapeutic devices for epilepsy. Ann. Neurol. 2012, 71, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.-C.; Huang, Y.-H.; Chang, C.-W.; Shaw, F.-Z.; Chiou, J.-C. Wireless and batteryless biomedical microsystem for neural recording and epilepsy suppression based on brain focal cooling. IET Nanobiotechnol. 2011, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Inoue, T.; Nomura, S.; Maruta, Y.; He, Y.; Koizumi, H.; Shirao, S.; Owada, Y.; Kunitsugu, I.; Yamakawa, T.; et al. Cooling of the epileptic focus suppresses seizures with minimal influence on neurologic functions. Epilepsia 2012, 53, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.F.; Goldring, A.B.; Baldwin, M.K.L.; Recanzone, G.H.; Chen, A.; Pan, T.; Simon, S.I.; Krubitzer, L. Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing. J. Neurophysiol. 2014, 112, 2529–2544. [Google Scholar] [CrossRef] [PubMed]
- Osorio, I.; Chang, F.-C.; Gopalsami, N. Seizure control with thermal energy? Modeling of heat diffusivity in brain tissue and computer-based design of a prototype mini-cooler. Epilepsy Behav. 2009, 16, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Nasuta, D.; Rhoads, A.; Wang, Y.; Geng, Y.; Hwang, Y.; Radermacher, R.; Takeuchi, I. Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance. Int. J. Refrig. 2016, 62, 177–192. [Google Scholar] [CrossRef]
- Jin, F.; Little, S. Thermionic cooling with functionalized carbon nanotube thin films. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Hishinuma, Y.; Geballe, T.H.; Moyzhes, B.Y.; Kenny, T.W. Measurements of cooling by room-temperature thermionic emission across a nanometer gap. J. Appl. Phys. 2003, 94, 4690–4696. [Google Scholar] [CrossRef]
- Shakouri, A.; Zhang, Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Trans. Compon. Packag. Technol. 2005, 28, 65–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Vashee, D.; Christofferson, J.; Shakouri, A.; Zeng, G.; LaBounty, C.; Piprek, J.; Croke, E. 3D electrothermal simulation of heterostructure thin film micro-coolers. ASME Adv. Energy Syst. Div. Publ. AES 2003, 43, 39–48. [Google Scholar]
- Chiba, Y.; Smaïli, A.; Mahmed, C.; Balli, M.; Sari, O. Thermal investigations of an experimental active magnetic regenerative refrigerator operating near room temperature. Int. J. Refrig. 2014, 37, 36–42. [Google Scholar] [CrossRef]
- Kim, S.; Ghirlanda, S.; Adams, C.; Bethala, B.; Sambandam, S.N.; Bhansal, S. Design, fabrication and thermal characterization of a magnetocaloric microcooler. Int. J. Energy Res. 2007, 31, 717–727. [Google Scholar] [CrossRef]
- Kutnjak, Z.; Rožič, B.; Pirc, R. Electrocaloric effect: Theory, measurements, and applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Blumenthal, P.; Molin, C.; Gebhardt, S.; Raatz, A. Active electrocaloric demonstrator for direct comparison of PMN-PT bulk and multilayer samples. Ferroelectrics 2016, 497, 1–8. [Google Scholar] [CrossRef]
- Lisenkov, S.; Herchig, R.; Patel, S.; Vaish, R.; Cuozzo, J.; Ponomareva, I. Elastocaloric Effect in Carbon Nanotubes and Graphene. Nano Lett. 2016, 16, 7008–7012. [Google Scholar] [CrossRef] [PubMed]
- Tušek, J.; Engelbrecht, K.; Mikkelsen, L.P.; Pryds, N. Elastocaloric effect of Ni-Ti wire for application in a cooling device. J. Appl. Phys. 2015, 117. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Liu, J. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Pataky, G.J.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015, 96, 420–427. [Google Scholar] [CrossRef]
- Lu, B.; Liu, J. Elastocaloric effect and superelastic stability in Ni–Mn–In–Co polycrystalline Heusler alloys: Hysteresis and strain-rate effects. Sci. Rep. 2017, 7, 2084. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Yao, S.; Zhang, T.; Zhang, Q. Modeling of Smart Heat Pump Using Thermoelectric and Electrocaloric Materials. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, USA, 28–30 September 2016; p. V001T04A003. [Google Scholar] [CrossRef]
- Starkov, I.; Starkov, A. Temperature Change in the Piezoelectrocaloric Element under Periodic External Fields. Ferroelectrics 2015, 480, 102–107. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, S.; Liu, J. Numerical Investigation on the Thermal Properties of the Micro-cooler. In Proceedings of the 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Xi’an, China, 16–19 August 2010; pp. 634–638. [Google Scholar]
- Osorio, I.; Kochemasov, G.; Baranov, V.; Eroshenko, V.; Lyubynskaya, T.; Gopalsami, N. Implantable brain microcooler for the closed-loop system of epileptic seizure prevention. In Proceedings of the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, Ljubljana, Slovenia, 26–30 June 2007; pp. 911–914. [Google Scholar]
- Christian, M.M.; Firebaugh, A.S.; Smith, A.A. COMSOL Thermal Model for a Heated Neural Micro-Probe. In Proceedings of the 2012 COMSOL Conference, Milan, Italy; 10–12 October 2012. [Google Scholar]
- Blake, A.S.; Petley, G.W.; Deakin, C.D. Effects of changes in packed cell volume on the specific heat capacity of blood: Implications for studies measuring heat exchange in extracorporeal circuits. Br. J. Anaesth. 2000, 84, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Lee, L.P.; Lee, J.S. A linear relation between the compressibility and density of blood. J. Acoust. Soc. Am. 2001, 109, 390–396. [Google Scholar] [CrossRef] [PubMed]
- AENEAS. Strategic Agenda “Guideline for Pan-European R&D&I, Co-Operation in the Electronics Value Chain”; AENEAS: Paris, France, 2013; Appendix to Chapter 7. [Google Scholar]
- Fernandes, J.; Dinis, H.; Gonçalves, L.M.; Mendes, P.M. Microcooling solution development and performance assessment for thermal neuromodulation applications. In Proceedings of the International Functional Electrical Stimulation Society (IFESS), La Grande-Motte, France, 8–10 June 2016. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.; Vendramini, E.; Miranda, A.M.; Silva, C.; Dinis, H.; Coizet, V.; David, O.; Mendes, P.M. Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation. Micromachines 2018, 9, 47. https://doi.org/10.3390/mi9020047
Fernandes J, Vendramini E, Miranda AM, Silva C, Dinis H, Coizet V, David O, Mendes PM. Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation. Micromachines. 2018; 9(2):47. https://doi.org/10.3390/mi9020047
Chicago/Turabian StyleFernandes, José, Estelle Vendramini, Ana M. Miranda, Cristiana Silva, Hugo Dinis, Veronique Coizet, Olivier David, and Paulo Mateus Mendes. 2018. "Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation" Micromachines 9, no. 2: 47. https://doi.org/10.3390/mi9020047
APA StyleFernandes, J., Vendramini, E., Miranda, A. M., Silva, C., Dinis, H., Coizet, V., David, O., & Mendes, P. M. (2018). Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation. Micromachines, 9(2), 47. https://doi.org/10.3390/mi9020047