A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance
Abstract
1. Introduction
2. Device Structure and Work Mechanism
3. Simulation Results and Discussion
4. Proposed Fabrication Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casady, J.B.; Johnson, R.W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Reitano, R.; Sangregorio, E.; Calcagno, L.; Trotta, A.; Parisi, M.; Meda, L.; La Via, F. Effect of the Oxidation Process on Carrier Lifetime and on SF Defects of 4H SiC Thick Epilayer for Detection Applications. Micromachines 2022, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Ha, J.; Kim, K.; Bae, H.; Kim, C.E.; Kim, J. Influence of Radiation-Induced Displacement Defect in 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors. Micromachines 2022, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cheng, X.; Zheng, L.; Sledziewski, T.; Yu, Y. Impact of the transition region between active area and edge termination on electrical performance of SiC MOSFET. Solid-State Electron. 2020, 171, 107873. [Google Scholar] [CrossRef]
- Fujihira, T. Theory of Semiconductor Superjunction Devices. Jpn. J. Appl. Phys. 1997, 36, 6254–6262. [Google Scholar] [CrossRef]
- Yu, L.; Sheng, K. Modeling and Optimal Device Design for 4H-SiC Super-Junction Devices. IEEE Trans. Electron Devices 2008, 55, 1961–1969. [Google Scholar] [CrossRef]
- Adachi, K.; Johnson, C.M.; Ohashi, H.; Shinohe, T.; Kinoshita, K.; Arai, K. Comparison of Super-Junction Structures in 4H-SiC and Si for High Voltage Applications. Mater. Sci. Forum 2001, 353–356, 719–722. [Google Scholar] [CrossRef]
- Yu, L.C.; Sheng, K. Breaking the Theoretical Limit of SiC Unipolar Power Device—A Simulation Study. In Proceedings of the International Semiconductor Device Research Symposium, Scottsdale, AZ, USA, 8–11 May 2006. [Google Scholar] [CrossRef]
- Tan, J.; Cooper, J.; Melloch, M.R. High-voltage accumulation-layer UMOSFET’s in 4H-SiC. IEEE Electron Device Lett. 1998, 19, 487–489. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakano, Y.; Aketa, M.; Nakamura, R.; Mitani, S.; Sakairi, H.; Yokotsujiet, Y. High performance SiC trench devices with ultra-low ron. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 26.5.1–26.5.3. [Google Scholar]
- Zhou, X.; Yue, R.; Zhang, J.; Dai, G.; Li, J.; Wang, Y. 4H-SiC trench MOSFET with floating/grounded junction barrier-controlled gate structure. IEEE Trans. Electron Devices 2017, 64, 4568–4574. [Google Scholar] [CrossRef]
- Masuda, T.; Saito, Y.; Kumazawa, T.; Hatayama, T.; Harada, S. 0.63 mΩcm2/1170 V 4H-SiC Super Junction V-Groove Trench MOSFET. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8.1.1–8.1.4. [Google Scholar]
- Baba, M.; Tawara, T.; Morimoto, T.; Harada, S.; Takei, M.; Kimura, H. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 83–86. [Google Scholar]
- Kong, M.; Hu, Z.; Yan, R.; Yi, B.; Zhang, B.; Yang, H. A novel SiC high-k superjunction power MOSFET integrated Schottky barrier diode with improved forward and reverse performance. J. Semicond. 2023, 44, 052801. [Google Scholar] [CrossRef]
- Huang, M.; Deng, Y.; Lai, L.; Yang, Z.; Gao, B.; Gong, M. A vertical superjunction MOSFET with n-Si and p-3C-SiC pillars. IEEE Trans. Electron Devices 2019, 66, 3922–3928. [Google Scholar] [CrossRef]
- Na, J.; Cheon, J.; Kim, K. High performance 4H-SiC MOSFET with deep source trench. Semicond. Sci. Technol. 2022, 37, 045004. [Google Scholar] [CrossRef]
- Hu, S.; Huang, Y.; Liu, T.; Guo, J.; Wang, J.A.; Luo, J. A comparative study of a deep-trench superjunction SiC VDMOS device. J. Comput. Electron. 2019, 18, 553–560. [Google Scholar] [CrossRef]
- Okuto, Y.; Crowell, C.R. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions. Solid State Electron. 1975, 18, 161–168. [Google Scholar] [CrossRef]
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. Physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Cooper, J.; Tsuji, T.; Chung, G.; Williams, J.; McDonald, K.; Feldman, L. Effect of Process Variations and Ambient Temperature on Electron Mobility at the SiO2/4H-SiC Interface. IEEE Trans. Electron Devices 2003, 50, 1582–1588. [Google Scholar] [CrossRef]
- Uchida, K.; Hiyoshi, T.; Nishiguchi, T.; Yamamoto, H.; Matsukawa, S.; Furumai, M.; Mikamura, Y. The Influence of Surface Pit Shape on 4H-SiC MOSFETs Reliability under High Temperature Bias Tests. Mater. Sci. Forum 2016, 858, 840–843. [Google Scholar] [CrossRef]
Parameters | C-MOS | SJ-MOS | DTSJ-MOS | Prop. | Unit |
---|---|---|---|---|---|
Cell pitch (full cell) | 2 | 2 | 2 | 2 | μm |
Depth of gate trench | 0.8 | 0.8 | 0.8 | 0.8 | μm |
Width of gate trench (full cell) | 0.8 | 0.8 | 0.2 | 0.2 | μm |
Depth of N drift | 11.5 | 11.5 | 11.5 | 11.5 | μm |
Width of deep trench (full cell) | / | / | 0.2 | 0.2 | μm |
Depth of deep trench | / | / | 12 | 11.8 | μm |
Width of P-pillar (full cell) | / | 1 | / | 0.24 | μm |
N drift doping | 8 × 1015 | 9.5 × 1016 | 9.5 × 1016 | 9.5 × 1016 | cm−3 |
P-pillar doping | / | 9.5 × 1016 | / | 4.7 × 1017 | cm−3 |
P-poly doping | / | / | 8.7 × 1017 | 2.5 × 1017 | cm−3 |
Thickness of gate trench (side) | 40 | 40 | 40 | 40 | nm |
Thickness of gate trench (bottom) | 80 | 80 | 80 | 80 | nm |
Thickness of deep trench (side) | / | / | 50 | 50 | nm |
Thickness of gate trench (bottom) | / | / | 100 | 100 | nm |
Parameters | C-MOS | SJ-MOS | Prop. | Unit |
---|---|---|---|---|
BV | 1113 | 1809 | 1717 | V |
Ron,sp | 2.9 | 1.44 | 0.93 | mΩ·cm2 |
Qgd | 595 | 271 | 101 | nC/cm2 |
BFOM (BV2/Ron,sp) | 427.2 | 2273 | 3170 | MW/cm2 |
HF-FOM (Ron,sp × Qgd) | 1725.5 | 390.24 | 93.93 | mΩ·nC |
Switching Loss | 12.24 | 1.46 | 1.60 | mJ |
Isat | 1553 | 1395 | 1480 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Wang, R.; Fang, H.; Li, P.; Zhao, L.; Wu, H.; Huang, Z.; Tao, J.; Hu, S. A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance. Micromachines 2024, 15, 684. https://doi.org/10.3390/mi15060684
Ma R, Wang R, Fang H, Li P, Zhao L, Wu H, Huang Z, Tao J, Hu S. A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance. Micromachines. 2024; 15(6):684. https://doi.org/10.3390/mi15060684
Chicago/Turabian StyleMa, Rongyao, Ruoyu Wang, Hao Fang, Ping Li, Longjie Zhao, Hao Wu, Zhiyong Huang, Jingyu Tao, and Shengdong Hu. 2024. "A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance" Micromachines 15, no. 6: 684. https://doi.org/10.3390/mi15060684
APA StyleMa, R., Wang, R., Fang, H., Li, P., Zhao, L., Wu, H., Huang, Z., Tao, J., & Hu, S. (2024). A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance. Micromachines, 15(6), 684. https://doi.org/10.3390/mi15060684