Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review
Abstract
:1. Introduction
2. Factors Affecting the Characteristics of FC
2.1. Aggregate Grading
2.2. Rate of Pozzolanic Binders
2.3. Foaming Agents
2.4. Density
3. Characteristics of FC
3.1. Fresh Characteristics
3.1.1. Consistency
3.1.2. Stability
3.1.3. Workability
3.2. Mechanical Characteristics
3.2.1. Compressive Strength
3.2.2. Modulus of Elasticity
3.2.3. Splitting Tensile, and Flexural Strengths and Fracture
3.2.4. Time Dependency
3.2.5. Thermal Performance
3.2.6. Acoustic Characteristic
4. Reinforcement System
4.1. Bar Reinforcement
4.2. Frame Reinforcement
5. Reinforced Foamed Concrete (RFC)
5.1. Bond Characteristics
5.2. Previous Research on RFC
5.2.1. Steel and FRP RFC
5.2.2. Numerical Study of RFC
6. Design Specifications for RFC
6.1. Summary of FC for Structural Use
6.2. Ultimate Limit State
6.3. Serviceability Limit State
6.4. Design Treatment
6.5. Design Summary
7. RFC Utilizations
7.1. FC Utilizations
7.2. Future Improvement
8. Conclusions
- -
- Elastic modulus: four-times lower than normal concrete, which justified that there are more cracks during serviceability state;
- -
- Splitting tensile strength: non-loading cracks from pore formation may induce lower tensile strength, minimum permissible strength of 2 MPa is suggested by ASTM C330;
- -
- Time dependency properties: all prediction models, GL2000, ACI 209, SAK and CEB MC90, failed to estimate the drying shrinkage and specific creep of FC without aggregate;
- -
- Bond strength: generally lower than normal concrete, but able to be applied in RFC design.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amran, Y.H.M.; Farzadnia, N.; Ali, A.A.A. Properties and applications of foamed concrete: A review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Amran, Y.H.M. Influence of structural parameters on the properties of fibred-foamed concrete. Innov. Infrastruct. Solut. 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H. Determination of Structural Behavior of Precast Foamed Concrete Sandwich Panel. Ph.D. Thesis, Universiti Putra Malaysia (UPM), Serdang, Malaysia, 2016. [Google Scholar]
- Mohamad, N.; Hassan, N. The structural performance of precast lightweight foam concrete sandwich panel with single and double shear truss connectors subjected to axial load. Adv. Mater. Res. 2013, 634, 2746–2751. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.; Omar, W.; Abdullah, R. Structural Behaviour of Precast Lightweight Foamed Concrete Sandwich Panel as a Load Bearing Wall. OIDA Int. J. Sustain. Dev. 2012, 5, 49–58. [Google Scholar]
- Hamad, A.J. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. Int. J. Mater. Sci. Eng. 2014, 2, 152–157. [Google Scholar] [CrossRef]
- Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Amran, Y.H.M.; Murali, G.; Baranov, A. Improving the behaviors of foam concrete through the use of composite binder. J. Build. Eng. 2020, 31, 101414. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Raj, A.; Sathyan, D.; Mini, K.M. Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 2019, 221, 787–799. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Muhammad Rashid, R.S.; Hejazi, F.; Safiee, N.A.; Abang Ali, A.A. Structural behavior of laterally loaded precast foamed concrete sandwich panel. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2016, 10, 255–263. [Google Scholar]
- Amran, Y.H.M.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A.; Ali, A.A.A. Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading. J. Civ. Environ. Struct. Constr. Arch. Eng. 2016, 10, 699–708. [Google Scholar]
- Mugahed Amran, Y.H.; Abang Ali, A.A.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A. Structural behavior of axially loaded precast foamed concrete sandwich panels. Constr. Build. Mater. 2016, 107, 307–320. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A.; Ali, A.A.A. Response of precast foamed concrete sandwich panels to flexural loading. J. Build. Eng. 2016, 7, 143–158. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Alabduljabbar, H.; Alrshoudi, F.; Rashid, R.S.M. Influence of slenderness ratio on the structural performance of lightweight foam concrete composite panel. Case Stud. Constr. Mater. 2019, 10, e00226. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeon, J.H.; Lee, H.K. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Ganesan, S.; Othuman Mydin, M.A.; Mohd Yunos, M.Y.; Mohd Nawi, M.N. Thermal Properties of Foamed Concrete with Various Densities and Additives at Ambient Temperature. Appl. Mech. Mater. 2015, 747, 230–233. [Google Scholar] [CrossRef]
- Neramitkornburi, A.; Horpibulsuk, S.; Shen, S.L.; Chinkulkijniwat, A.; Arulrajah, A.; Disfani, M.M. Durability against wetting-drying cycles of sustainable lightweight cellular cemented construction material comprising clay and fly ash wastes. Constr. Build. Mater. 2015, 77, 41–49. [Google Scholar] [CrossRef]
- Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Constr. Build. Mater. 2011, 25, 4037–4042. [Google Scholar] [CrossRef]
- Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 2013, 38, 872–878. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Gutierrez, M.; Alyousef, R.; El-zeadani, M.; Alabduljabbar, H.; Aune, V. Performance investigation of high-proportion Saudi-fly-ash-based concrete. Results Eng. 2020, 6, 100118. [Google Scholar] [CrossRef]
- César Maruyama, R.; Camarini, G. Properties of Cellular Concrete for Filters. Int. J. Eng. Technol. 2015, 7, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.M.; Giama, E. Environmental performance evaluation of thermal insulation materials and its impact on the building. Build. Environ. 2007, 42, 2178–2187. [Google Scholar] [CrossRef]
- Thakrele, M.H. Experimental study on foam concrete. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2014, 4, 145–158. [Google Scholar]
- Mays-mcsi, C.V. Lightweight Flowable Fill (Cellular Concrete); MAYS Construction Specialties Inc.: Grand Junction, CO, USA, 2020; Volume 1. [Google Scholar]
- Abd Saloum, Q.; Zaid Abdullah, M.; Adnan Hashim, A. The Preparation of Foam Cement and Determining Some of Its Properties. Eng. Technol. J. 2015, 33, 61–69. [Google Scholar] [CrossRef]
- Hajek, M.; Decky, M.; Drusa, M.; Orininová, L.; Scherfel, W. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Oginni, F. Continental Application of Foamed Concrete Technology: Lessons for Infrastructural Development in Africa. Br. J. Appl. Sci. Technol. 2015, 5, 417–424. [Google Scholar] [CrossRef]
- Zhao, X.; Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.C.; Huang, R.; Wang, Q. Properties of foamed mortar prepared with granulated blast-furnace slag. Materials 2015, 8, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.K.; Tan, C.S.; Chen, K.P.; Lee, M.L.; Lee, W.P. Effect of different sand grading on strength properties of cement grout. Constr. Build. Mater. 2013, 38, 348–355. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lim, M.H.; Lee, Y.L.; Lee, Y.Y.; Tan, C.S.; Mohammad, S.; Ma, C.K. Compressive strength of lightweight foamed concrete with charcoal as a sand replacement. Indian J. Eng. Mater. Sci. 2018, 25, 98–108. [Google Scholar] [CrossRef]
- Lee, Y.L. Structural Behaviour of Slab Panel System with Embedded Cold-Formed Steel Skeletal Frame. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor, Malaysia, 2016. [Google Scholar]
- Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.C.; Hossain, M.U.; Poon, C.S. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Constr. Build. Mater. 2017, 151, 441–448. [Google Scholar] [CrossRef]
- Saman, M. Performance of Foamed Concrete with Waste Paper Sludge Ash (Wpsa) and Fine Recycled Concrete Aggregate (Frca) Contents. Int. Sustain. Civ. Eng. J. 2012, 1, 19–27. [Google Scholar] [CrossRef]
- Ikponmwosa, E.; Fapohunda, C.; Kolajo, O.; Eyo, O. Structural behaviour of bamboo-reinforced foamed concrete slab containing polyvinyl wastes (PW) as partial replacement of fine aggregate. J. King Saud Univ. Eng. Sci. 2017, 29, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Hadipramana, J.; Samad, A.A.A.; Zaidi, A.M.A.; Mohammad, N.; Riza, F.V. Effect of uncontrolled burning rice husk ash in foamed concrete. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013. [Google Scholar]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Akhund, M.A.; Khoso, A.R.; Pathan, A.A.; Memon, U.; Siddiqui, F.H. Influence of biomass aggregate on strength of foam concrete. Int. J. Civ. Eng. Technol. 2017, 8, 1645–1653. [Google Scholar]
- Lim, S.K.; Tan, C.S.; Zhao, X.; Ling, T.C. Strength and toughness of lightweight foamed concrete with different sand grading. KSCE J. Civ. Eng. 2014, 19, 2191–2197. [Google Scholar] [CrossRef] [Green Version]
- Balasundaram, M. Experimental Study on Light Weight Foam Concrete Bricks. Int. Res. J. Eng. Technol. 2017, 4, 677–686. [Google Scholar]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Constr. Build. Mater. 2018, 171, 223–231. [Google Scholar] [CrossRef]
- Boon, K.H.; Loon, L.Y.; Chuan, D.Y.E. Compressive Strength and Shrinkage of Foamed. Concet 2006, 12, 1–8. [Google Scholar]
- Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Lim, J.H. Engineering Properties of 1200 kg/m Lightweight Foamed Concrete with Egg Shell Powder as Partial Replacement Material of Cement. In E3S Web of Conferences; EDP Sciences: Paris, France, 2018. [Google Scholar]
- Lim, S.K.; Tan, C.S.; Lim, O.Y.; Lee, Y.L. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Constr. Build. Mater. 2013, 46, 39–47. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Mendis, P.; Nguyen, T.; Kashani, A.; van Deventer, J.S.J. Pore characteristics in one-part mix geopolymers foamed by H2O2: The impact of mix design. Mater. Des. 2017, 130, 381–391. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. [Google Scholar] [CrossRef]
- Sargent, P. The development of alkali-activated mixtures for soil stabilisation. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Cambridge, UK, 2015; ISBN 9781782422884. [Google Scholar]
- Black, L. Low clinker cement as a sustainable construction material. In Sustainability of Construction Materials; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Hussin, M.W.; Abdullah, K. Properties Of Palm Oil Fuel Ash Cement Based Aerated Concrete Panel Subjected To Different Curing Regimes. Malaysian J. Civ. Eng. 2009, 21, 17–31. [Google Scholar]
- Zhang, Y.J.; Kang, L.; Liu, L.C. Alkali-activated cements for photocatalytic degradation of organic dyes. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Cambridge, UK, 2015; ISBN 9781782422884. [Google Scholar]
- Panesar, D.K. Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Behaviour and assessment of foamed concrete for construction applications. In Use of Foamed Concrete in Construction, Proceedings of the International Conference, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005. [Google Scholar]
- Aldridge, D. Introduction to foamed concrete: What, why, how? In Use of Foamed Concrete in Construction, Proceedings of the International Conference, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005. [Google Scholar]
- Nambiar, E.K.K.; Ramamurthy, K. Influence of filler type on the properties of foam concrete. Cem. Concr. Compos. 2006. [Google Scholar] [CrossRef]
- Atoyebi, O.D.; Odeyemi, S.O.; Bello, S.A.; Ogbeifun, C.O. Splitting Tensile Strength Assessment of Lightweight Foamed Concrete Reinforced with Waste Tyre Steel Fibres. Int. J. Civ. Eng. Technol. 2018, 9, 1129–1137. [Google Scholar]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew: Norwich, NY, USA, 2014; ISBN 9780323279383. [Google Scholar]
- Tan, X.; Chen, W.; Hao, Y.; Wang, X. Experimental study of ultralight (<300 kg/m3) foamed concrete. Adv. Mater. Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Bing, C.; Zhen, W.; Ning, L. Experimental Research on Properties of High-Strength Foamed Concrete. J. Mater. Civ. Eng. 2012, 24, 113–118. [Google Scholar] [CrossRef]
- Tikalsky, P.J.; Pospisil, J.; MacDonald, W. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete. Cem. Concr. Res. 2004, 34, 889–893. [Google Scholar] [CrossRef]
- Richard, A. Experimental Production of Sustainable Lightweight Foamed Concrete. Br. J. Appl. Sci. Technol. 2013, 3, 994–1005. [Google Scholar] [CrossRef]
- Wu, X.; Li, C.; Zhao, C.; Sheng, Y.; Lu, S. The Synthesis of an Aqueous Film Forming Foam Concentration and the Drainage Characteristic of the Foam. In International Conference on Circuits and Systems; Atlantis Press: Paris, France, 2015. [Google Scholar]
- Welker, C.D.; Welker, M.A.; Welker, M.F.; Justman, M.A.; Hendricksen, R.S. Foamed Concrete Compositional Process. U.S. Patent 6,153,005, 28 November 2000. [Google Scholar]
- Byun, K.J.; Song, H.W.; Park, S.S. Development of structural lightweight foamed concrete using polymer foam agent. In ICPIC ’98. International Congress on Polymers in Concrete; Casma: Ica, Peru, 1998. [Google Scholar]
- Wee, T.H.; Babu, D.S.; Tamilselvan, T.; Lim, H.S. Air-void system of foamed concrete and its effect on mechanical properties. ACI Mater. J. 2006, 103. [Google Scholar] [CrossRef]
- Van Deijk, S. Foam concrete. Concrete 1991, 25, 49–54. [Google Scholar]
- Kolias, S.; Georgiou, C. The effect of paste volume and of water content on the strength and water absorption of concrete. Cem. Concr. Compos. 2005, 27, 211–216. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. Porosity and permeability of foamed concrete. Cem. Concr. Res. 2001, 31, 805–812. [Google Scholar] [CrossRef]
- Roslan, A.F.; Awang, H.; Mydin, M.A.O. Effects of various additives on drying shrinkage, compressive and flexural strength of lightweight foamed concrete (LFC). In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013. [Google Scholar]
- Kunhanandan Nambiar, E.K.; Ramamurthy, K. Fresh state characteristics of foam concrete. J. Mater. Civ. Eng. 2008, 20, 111–117. [Google Scholar] [CrossRef]
- McCormick, F.C. A Rational Procedure for Proportioning Pre-Formed foam Cellular Concrete Mixes. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1964. [Google Scholar]
- Odler, I.; Rößler, M. Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cem. Concr. Res. 1985, 15, 401–410. [Google Scholar] [CrossRef]
- Rößler, M.; Odler, I. Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cem. Concr. Res. 1985, 15, 320–330. [Google Scholar] [CrossRef]
- Li, W.; Guo, Z. Experimental investigation of strength and deformation of concrete at elevated temperature. J. Build. Struct. 1993, 1, 8–16. [Google Scholar]
- Wan Ibrahim, M.H.; Jamaludin, N.; Irwan, J.M.; Ramadhansyah, P.J.; Suraya Hani, A. Compressive and flexural strength of foamed concrete containing polyolefin fibers. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014. [Google Scholar]
- Tiong, H.Y.; Lim, S.K.; Lim, J.H. Strengths and sorptivity of lightweight foamed concrete with crushed steel slag. J. Built Environ. Technol. Eng. 2017, 3, 37–48. [Google Scholar]
- Tiong, H.Y.; Lim, S.K.; Lim, J.H. Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation. In MATEC Web of Conferences; EDP Sciences: Paris, France, 2017. [Google Scholar]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On void structure and strength of foamed concrete made without/with additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef]
- ASTM C1437-13. Standard Test Method for Flow of Hydraulic Cement Mortar; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM C1611/C1611M-14. Standard Test Method for Slump Flow of Self-Consolidating Concrete; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Tan, C.S.; Lee, Y.L.; Mohammad, S.; Lim, S.K.; Lee, Y.H.; Lim, J.H. Flexural behaviour of reinforced slab panel system with embedded cold-formed steel frames as reinforcement. J. Teknol. 2015, 74. [Google Scholar] [CrossRef] [Green Version]
- Meilin, P. Development of Structural Grade Foamed Concrete; University of Dundee: Dundee, UK, 1999. [Google Scholar]
- Narayanan, N. Influence of Composition on the Structure and Properties of Aerated Concrete. Master’s. Thesis, IIT Madras, Tamil Nadu, India, 1999. [Google Scholar]
- Dhir, R.; Jones, M.; Nicol, L. Development of Structural Grade Foamed Concrete; DETR Research Project; University of Dundee: Dundee, UK, 1999. [Google Scholar]
- Brewer, W.E. Controlled low strength materials (CLSM). In Radical Concrete Technology; Dhir, R.K., Hewlett, P.C., Eds.; E and FN Spon: New York, NY, USA, 1996; pp. 655–667. [Google Scholar]
- Gowri, R.; Anand, K.B. Experimental Study on Fresh State Characteristics of Foam Concrete with Ultrafine GGBS. Int. J. Innov. Res. Sci. Eng. Technol. (IJIRSET) 2016, 5, 160–167. [Google Scholar]
- Jones, M.R.; Zheng, L.; Ozlutas, K. Stability and instability of foamed concrete. Mag. Concr. Res. 2016, 68, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Kuzielová, E.; Pach, L.; Palou, M. Effect of activated foaming agent on the foam concrete properties. Constr. Build. Mater. 2016, 125, 998–1004. [Google Scholar] [CrossRef]
- Cong, M.; Bing, C. Properties of a foamed concrete with soil as filler. Constr. Build. Mater. 2015, 76, 61–69. [Google Scholar] [CrossRef]
- Matalkah, F.; Bharadwaj, H.; Balachandra, A.; Soroushian, P. Aerated Concrete Produced Using Locally Available Raw Materials. Civ. Eng. J. 2017, 3, 214–220. [Google Scholar] [CrossRef]
- Dhir, R.; Hewlett, P. Concrete in the Service of Mankind: Radical Concrete Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Krishnan, G.; Anand, K.B. Industrial waste utilization for foam concrete. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Perlite Insulating Concrete. ACI J. Proc. 1954. [CrossRef]
- Mikulica, K.; Labaj, M.; Hela, R. Rehabilitation of Floor Structures Using Foam Concrete. Proc. Eng. 2017, 195, 108–113. [Google Scholar] [CrossRef]
- Vardhan, R.; Chandel, S.; Sakale, R. Study of Cellular Light Weight Concrete. IJSRD Int. J. Sci. Res. Dev. 2016, 4, 1–6. [Google Scholar]
- McCormick, F.C. Rational proportioning of preformed foam cellular concrete. J. Proc. 1967, 64, 104–110. [Google Scholar]
- Kearsley, E.P.; Wainwright, P.J. The effect of porosity on the strength of foamed concrete. Cem. Concr. Res. 2002, 32, 233–239. [Google Scholar] [CrossRef]
- Namsone, E.; Šahmenko, G.; Korjakins, A.; Namsone, E. Influence of Porous Aggregate on the Properties of Foamed Concrete. Constr. Sci. 2017, 19. [Google Scholar] [CrossRef]
- Ibrahim, N.M.; Salehuddin, S.; Amat, R.C.; Rahim, N.L.; Izhar, T.N.T. Performance of Lightweight Foamed Concrete with Waste Clay Brick as Coarse Aggregate. Apcbee Procedia 2013, 5, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Falade, F.; Ikponmwosa, E.; Fapohunda, C. A Study on the Compressive and Tensile Strength of Foamed Concrete Containing Pulverized Bone as a Partial Replacement of Cement. J. Engg. Appl. Sci 2013, 13, 82–93. [Google Scholar]
- Mastali, M.; Kinnunen, P.; Isomoisio, H.; Karhu, M.; Illikainen, M. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Constr. Build. Mater. 2018, 187, 371–381. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Alabduljabbar, H.; Khudhair, M.H.R.; Hejazi, F.; Alaskar, A.; Alrshoudi, F.; Siddika, A. Performance properties of structural fibred-foamed concrete. Results Eng. 2020, 5, 100092. [Google Scholar] [CrossRef]
- Van Zijl, G.P.A.G.; Van Rooyen, A.S.; Mubatapasango, M.S.; Dunn, T.P.A.; Grafe, J. Durability and bond of reinforced lightweight foamed concrete. In High Tech Concrete: Where Technology and Engineering Meet—Proceedings of the 2017 Fib Symposium; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Alengaram, U.J.; Al Muhit, B.A.; Jumaat, M.Z. Bin Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013, 38, 161–172. [Google Scholar] [CrossRef]
- Pichler, B.; Hellmich, C.; Eberhardsteiner, J.; Wasserbauer, J.; Termkhajornkit, P.; Barbarulo, R.; Chanvillard, G. Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach. Cem. Concr. Res. 2013, 45, 55–68. [Google Scholar] [CrossRef]
- Durack, J.M.; Weiqing, L. The properties of foamed air cured fly ash based concrete for masonry production. In Proceedings of the Fifth Australasian Masonry Conference, Gladstone, Australia, 1–3 July 1998. [Google Scholar]
- Neville, A. Properties of Concrete, 5th ed.; Pearson Education Limited: London, UK, 2012; ISBN 9780273755807. [Google Scholar]
- Brady, K.C.; Watts, G.R.A.; Jones, M.R. Specification for Foamed Concrete; TRL Limited: Crowthorne, UK, 2001. [Google Scholar]
- Falade, F.; Ikponmwosa, E.; Fapohunda, C. Flexural performance of foam concrete containing pulverized bone as partial replacement of cement. Maejo Int. J. Sci. Technol. 2014. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 2005, 57, 21–31. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel 2005, 4, 1398–1409. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Wang, Y.C. Mechanical properties of foamed concrete exposed to high temperatures. Constr. Build. Mater. 2012, 26, 638–654. [Google Scholar] [CrossRef]
- Saint-Jalmes, A.; Peugeot, M.L.; Ferraz, H.; Langevin, D. Differences between protein and surfactant foams: Microscopic properties, stability and coarsening. Colloids Surf. A Physicochem. Eng. Asp. 2005, 263, 219–225. [Google Scholar] [CrossRef]
- Guide For Cellular Concretes above 50 pcf and for Aggregate Concretes above 50 pcf with Compressive Strengths Less Than 2500 psi; American Concrete Institute: Detroit, MI, USA, 1993.
- Raupit, F.; Saggaff, A.; Tan, C.S.; Lee, Y.L.; Tahir, M.M. Splitting tensile strength of lightweight foamed concrete with polypropylene fiber. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 424. [Google Scholar] [CrossRef]
- Kum, Y.J. Cracking Mode and Shear Strength of Lightweight Concrete Beams. Ph.D. Thesis, National University Singapore, Singapore, 2011. [Google Scholar]
- ASTM C330/C330M. Standard Specification for Lightweight Aggregates for Structural Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Rahman, N.A.; Jaini, Z.M.; Zahir, N.N.M. Fracture energy of foamed concrete by means of the three-point bending tests on notched beam specimens. ARPN J. Eng. Appl. Sci. 2015, 10, 6562–6570. [Google Scholar]
- Jaini, Z.M.; Abd Rahman, N.; Rum, R.H.M.; Haurula, M.M. Fracture Energy of Foamed Concrete: Numerical Modelling Using the Combined Finite-Discrete Element Method. In MATEC Web of Conferences; EDP Sciences: Paris, France, 2017. [Google Scholar]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thorn, N.H.; Dawson, A.R. Failure mechanism of foamed concrete made with/without additives and lightweight aggregate. J. Adv. Concr. Technol. 2016, 14, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Hadipramana, J.; Samad, A.A.A.; Zaidi, A.M.A.; Mohammad, N.; Ali, N. Contribution of polypropylene fibre in improving strength of foamed concrete. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013. [Google Scholar]
- Hulimka, J.; Krzywoń, R.; Jȩdrzejewska, A. Laboratory Tests of Foam Concrete Slabs Reinforced with Composite Grid. Procedia Eng. 2017, 193, 337–344. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 2019, 209, 45–59. [Google Scholar] [CrossRef]
- Babu, D.S. Mechanical and Deformational Properties, and Shrinkage Cracking Behaviour of Lightweight Concretes. Ph.D. Thesis, National University Singapore, Singapore, 2008. [Google Scholar]
- Harith, I.K. Study on polyurethane foamed concrete for use in structural applications. Case Stud. Constr. Mater. 2018, 8, 79–86. [Google Scholar] [CrossRef]
- Gardner, N.J.; Lockman, M.J. Design provisions for drying shrinkage and creep of normal-strength concrete. Mater. J. 2001, 98, 159–167. [Google Scholar] [CrossRef]
- ACI Committee 209. 209R-92: Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Sakata, K. Prediction of concrete creep and shrinkage. In Proceedings of the 5th International RILEM Symposium, Barcelona, Spain, 6–9 September 1993; pp. 649–654. [Google Scholar]
- CEB-FIP Model Code 1990; Thomas Telford Ltd.: London, UK, 1993.
- Jones, M.; McCarthy, M. Moving Fly Ash Utilisation in Concrete Forward: A UK Perspective; University Press of Kentucky: Lexington, UK, 2003. [Google Scholar]
- Wei, S.; Yiqiang, C.; Yunsheng, Z.; Jones, M.R. Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 2013, 47, 1278–1291. [Google Scholar] [CrossRef]
- She, W.; Zhang, Y.; Jones, M.R. Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete. Constr. Build. Mater. 2014, 50, 421–431. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Liu, M.Y.J.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 2014, 72, 238–245. [Google Scholar] [CrossRef]
- Tada, S. Material design of aerated concrete-An optimum performance design. Mater. Struct. 1986, 19, 21–26. [Google Scholar] [CrossRef]
- ASTM A706/A706M-15 Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete; ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM A615/A615M−15a Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; ASTM International: West Conshohocken, PA, USA, 2015.
- BS, E.N. Steel for the Reinforcement of Concrete: Weldable Reinforcing Steel: General; Central Secretariat: Brussels, Belgium, 2005. [Google Scholar]
- BSI. Steel for the Reinforcement of Concrete: Weldable Reinforcing Steel: Bar, Coil and Decoiled Product Specification; British Standards Institution: London, UK, 2005. [Google Scholar]
- BSSA. Stainless Steel Bars-Reinforcement of Concrete-Requirements and Test Methods; BSI Standards Limited: Sheffield, UK, 2016. [Google Scholar]
- Australian/New Zealand Standard, AS/NZS 4671:2001; Steel Reinforcing Materials; Standards Australia International Ltd.: Sydney, Australia; Standards New Zealand: Wellington, New Zealand, 2001.
- Lee, Y.L.; Lim, J.H.; Lim, S.K.; Tan, C.S. Flexural Behaviour of Reinforced Lightweight Foamed Mortar Beams and Slabs. KSCE J. Civ. Eng. 2018, 22, 2880–2889. [Google Scholar] [CrossRef]
- The Building Departement (BD). Code of Practice for Structural Use of Concrete (TC); Building Department: Mongkok, Hong Kong, 2013; ISBN 0626132401. [Google Scholar]
- BSI. British Standards Institution Structural Use of Concrete BS8110-1:1997; BSI: London, UK, 1997. [Google Scholar]
- Eurocode 2: European Committee for Standardization. Design of Concrete Structures—Part 1-2: General Rules; Structural Fire Design: Brussels, Belgium, 2004. [Google Scholar]
- ACI Committee 318 ACI 318-14: Building Code Requirements for Structural Concrete (ACI 318-14); American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Lee, H.S.; Ismail, M.A.; Woo, Y.J.; Min, T.B.; Choi, H.K. Fundamental study on the development of structural lightweight concrete by using normal coarse aggregate and foaming agent. Materials 2014, 7, 4536–4554. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Bond properties of lightweight concrete—A review. Constr. Build. Mater. 2016, 112, 478–496. [Google Scholar] [CrossRef]
- De Villiers, J. Bond Behaviour of Deformed Steel Reinforcement in Lightweight Foamed Concrete. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2015. [Google Scholar]
- De Villiers, J.P.; van Zijl, G.P.A.G.; van Rooyen, A.S. Bond of deformed steel reinforcement in lightweight foamed concrete. Struct. Concr. 2017, 18, 496–506. [Google Scholar] [CrossRef]
- De Villiers, J.; Van Zijl, G.; van Rooyen, A. Fracture of lightweight foamed concrete in evaluation of bond behaviour of steel reinforcement embedded in LWFC. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA, 29 May–1 June 2016. [Google Scholar]
- Pauzi, N.N.M.; Lee, Y.L.; Tan, C.S. Mechanical properties of 3:1 cement sand ratio lightweight foamed concrete interact with cold-formed steel. In Researches on Lightweight Foamed Concrete; Tan, C.S., Lim, S.K., Eds.; UTM Press: Johor, Malaysia, 2017; pp. 17–30. [Google Scholar]
- Hasanuddin, I.S.; Lee, Y.H.; Lim, S.K. Mechanical properties of 4:1 cement sand ratio lightweight foamed concrete interact with cold-formed steel. In Researches on Lightweight Foamed Concrete; Tan, C.S., Lim, S.K., Eds.; UTM Press: Johor, Malaysia, 2017; pp. 31–42. [Google Scholar]
- Shahidan, N.I.; Mohammad, S.; Lee, Y.H. Mechanical properties of 5:1 cement sand ratio lightweight foamed concrete interact with cold-formed steel. In Researches on Lightweight Foamed Concrete; Tan, C.S., Lim, S.K., Eds.; UTM Press: Johor, Malaysia, 2017; pp. 43–52. [Google Scholar]
- Regan, P.E. Shear in reinforced aerated concrete. Int. J. Cem. Compos. Light. Concr. 1979, 1, 47–61. [Google Scholar] [CrossRef]
- Ayudhya, B.I.N.; Ungkoon, Y. Bond strength of fiber reinforced polymer (FRP) bars in autoclaved aerated concrete (AAC). In Advances in FRP Composites in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Weigler, H.; Karl, S. Structural lightweight aggregate concrete with reduced density- lightweight aggregate foamed concrete. Int. J. Cem. Compos. Light. Concr. 1980, 2, 101–104. [Google Scholar] [CrossRef]
- Ramezani, M.; Vilches, J.; Neitzert, T. Evaluation of the pull-out strength of galvanised steel strips in a cement-based material. J. Zhejiang Univ. Sci. A 2013, 14, 843–855. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, M.; Vilches, J.; Neitzert, T. Pull-out behavior of galvanized steel strip in foam concrete. Int. J. Adv. Struct. Eng. 2013, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, M.; Vilches, J.; Neitzert, T. Experimental and numerical analysis pull-out strength of steel strip in foam concrete. Eur. J. Environ. Civ. Eng. 2013, 17, 982–1001. [Google Scholar] [CrossRef]
- Farghal Maree, A.; Hilal Riad, K. Analytical and experimental investigation for bond behaviour of newly developed polystyrene foam particles’ lightweight concrete. Eng. Struct. 2014, 58, 1–11. [Google Scholar] [CrossRef]
- Rosli, M.F.; Rashidi, A.; Ahmed, E. The Effect of Reinforcement, Expanded Polystyrene (EPS) and The Effect of Reinforcement, Expanded Polystyrene (EPS) andThe Effect of Reinforcement, Expanded Polystyrene (EPS) and Fly Ash On The Strength of Foam Concrete. J. Civ. Eng. Sci. Technol. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jumaat, M.Z.; Johnson Alengaram, U.; Mahmud, H. Shear strength of oil palm shell foamed concrete beams. Mater. Des. 2009, 30, 2227–2236. [Google Scholar] [CrossRef]
- Dunn, T.P.A. Precast Lightweight Foamed Concrete Walling, a Structural System for Low-Rise Residential Buildings. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Lytvyniak, O.; Tashak, M. The suggestions as to the calculation bearing capacity of sandwich reinforced concrete—Foamed concrete floor slabs. Acta Polytech. 2019, 59, 59–66. [Google Scholar] [CrossRef]
- Abd, S.M.; Ghalib, D. Flexural Behaviour of Lightweight Foamed Concrete Beams Reinforced with GFRP Bars. Civ. Eng. J. 2018, 4, 278. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.; Brewer, R.S. The effect of the type of aggregate on the diagonal cracking of reinforced concrete beams. Mag. Concr. Res. 1963, 15, 87–92. [Google Scholar] [CrossRef]
- Gerritse, A. Design considerations for reinforced lightweight concrete. Int. J. Cem. Compos. Light. Concr. 1981, 3, 57–69. [Google Scholar] [CrossRef]
- Kozlowski, M.; Kadela, M.; Gwozdz-Lason, M. Numerical Fracture Analysis of Foamed Concrete Beam Using XFEM Method. Appl. Mech. Mater. 2016, 837, 183–186. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kadela, M. Combined Experimental and Numerical Study on Fracture Behaviour of Low-Density Foamed Concrete. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Jaini, Z.M.; Feng, Y.T.; Owen, D.R.J.; Mokhatar, S.N. Fracture failure of reinforced concrete slabs subjected to blast loading using the combined finite-discrete element method. Lat. Am. J. Solids Struct. 2016, 13, 1086–1106. [Google Scholar] [CrossRef] [Green Version]
- Lia, Q.; Wanga, H.; Zhanga, Z.; Reidb, A. Numerical simulation of porosity on thermal properties and fire resistance of foamed concrete. J. Sustain. Cem. Mater. 2013, 2, 13–19. [Google Scholar] [CrossRef] [Green Version]
- She, W.; Zhao, G.; Cai, D.; Jiang, J.; Cao, X. Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Constr. Build. Mater. 2018, 163, 113–121. [Google Scholar] [CrossRef]
- Sipple, M.A. High Strength Self-Compacting Foam Concrete; Initial Thesis Report; UNSW ADFA: Canberra, Australia, 2009. [Google Scholar]
- Allouzi, R.; Al Qatawna, A.; Al-Kasasbeh, T. Lightweight foamed concrete mixture for structural use. ACI Mater. J. 2020, 117, 99–109. [Google Scholar] [CrossRef]
- Park, R.; Paulay, T. Reinforced Concrete Structures; John Wiley & Sons, Inc.: Christchurch, New Zealand, 1975. [Google Scholar]
- Tan, J.H.; Lim, S.K.; Lim, J. Flexural behaviour of reinforced lightweight foamed concrete beams. Community Res. 2017, 27, 21–31. [Google Scholar]
- Thorenfeldt, E.; Stemland, H. Shear Capacity of Lightweight Concrete Beams without Shear Reinforcement. In Proceedings of the The Second International Symposium on Structural Lightweight Aggregate Concrete, Kristiansand, Norwzy, 18–22 June 2000; pp. 244–255. [Google Scholar]
- Regan, P.E.; Arasteh, A.R. Lightweight aggregate foamed concrete. Struct. Eng. London 1990, 68, 167–173. [Google Scholar]
- Zareh, M. Comparative Study of Lightweight and Normal Weight Concrete in Flexure. Master’s Thesis, Portland State University, Oregon, OR, USA, 1971. [Google Scholar]
- Ramirez, J.A.; Olek, J.; Malone, B.J. Shear Strength of Lightweight Reinforced Concrete Beams. In High-Performance Structural Lightweight Concrete; Ries, J.P., Holm, T., Eds.; American Concrete Institute: Farmington Hills, MI, USA, 2004; pp. 69–90. [Google Scholar]
- Ahmad, S.H.; Xie, Y.; Yu, T. Shear strength of reinforced lightweight concrete beams of normal and high strength concrete. Mag. Concr. Res. 1994, 46, 57–66. [Google Scholar] [CrossRef]
- Kado, B.; Mohammad, S.; Lee, Y.H.; Shek, P.N.; Kadir, M.A.A. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 140. [Google Scholar]
- Kado, B.; Mohammad, S.; Lee, Y.; Shek, P.; Kadir, M. Temperature Analysis of Steel Hollow Column Exposed to Standard Fire. J. Struct. Technol. 2018, 3, 1–8. [Google Scholar]
- Markin, V.; Nerella, V.N.; Schröfl, C.; Guseynova, G.; Mechtcherine, V. Material design and performance evaluation of foam concrete for digital fabrication. Materials 2019, 12, 2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Sari, K.A.; Mohammed Sani, A.R. Applications of Foamed Lightweight Concrete. In MATEC Web of Conferences; EDP Sciences: Paris, France, 2017. [Google Scholar]
- Liew, A.C.M. New innovative lightweight foam concrete technology. In Use of Foamed Concrete in Construction, Proceedings of the International Conference, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005. [Google Scholar]
- Mugahed Amran, Y.H.; Rashid, R.S.M.; Hejazi, F.; Abang Ali, A.A.; Safiee, N.A.; Bida, S.M. Structural Performance of Precast Foamed Concrete Sandwich Panel Subjected to Axial Load. KSCE J. Civ. Eng. 2018, 22, 1179–1192. [Google Scholar] [CrossRef]
- Mindess, S. Developments in the Formulation and Reinforcement of Concrete; Woodhead Publishing: Cambridge, UK, 2019; ISBN 9780081026168. [Google Scholar]
- Bagheri, A.; Rastegar, M.M. Investigation of passive layer formation on steel rebars in foamed concrete. Mater. Corros. 2019, 70, 1252–1261. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Wang, Z.; Cui, J.; Jiang, Q.; Ma, L.; Fang, M. Life cycle assessment of lightweight aggregate concrete block. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014. [Google Scholar]
- Lemay, L. Life Cycle Assessment of Concrete Buildings, Concrete Sustainability Report, CSR04; National Ready Mixed Concrete Association: Silver Spring, MD, USA, 2011. [Google Scholar]
- Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M. The environmental impacts of foamed concrete production and exploitation. In IOP Conference Series: Materials Science and Engineering; Iop Publishing: Bristol, UK, 2017. [Google Scholar]
Type of Material Used | Main Findings | Refs. |
---|---|---|
Quarry waste | The excellent bond is achieved through the finer quarry dust, which alleviated the necessity of foam’s volume for the given density of concrete. Henceforth, improved compressive strength and thermal conductivity were detected. | [32] |
Fine-recycled concrete aggregate | The strength is greater, up to a 10% replacement by mass of sand. Moreover, reported that the recycled sand exhibited higher porosity and water absorption than calcareous sand used. | [33] |
Polyvinyl waste | The combined ferrite, alumina, and silica content of polyvinyl waste above 51.45% had the potential to produce C–S–H gel. Improved bending performance and compressive strength. | [34] |
Rice husk ash (RHA) | Compressive strength increased with increased RHA due to its pozzolanic nature. | [35] |
M Sand | Compressive strength increased up to 60% replacement of sand with M Sand and after which it decreased. | [36] |
Biomass aggregates | They observed that the biomass aggregate FC achieved the highest compressive strength at 91 days of air curing compared to normal sand in the indoor environment. | [37] |
Different gradations of sand | Flexural strength, compressive strength, and ductility were increased with the fineness of sand. | [38] |
Three diverse grout binders such as quarry dust, river sand, and sea sand | Specimen with quarry dust as filler attained more density and strength than other samples, and sea sand as filler achieved relatively adjacent values of strength and density as river sand as the grout materials. | [39] |
Glass fines | Shrinkage in the concrete paste abridged. A noticeable improvement in strength at lower density was reported. | [40] |
Refs. | Variable of Investigation (s) | Density, kg/m3 | Strength, MPa | Performance Index, MPa | |||
---|---|---|---|---|---|---|---|
Fresh | Matured | Stability | |||||
Type of pozzolanic binders | |||||||
[43] | POFA as a sand replacement, 28-day strength | No POFA | 1248–1339 | 1200–1300 | - | 5.01–5.42 | 4.11–4.36 |
10% POFA | 1326–1365 | 1287–1338 | - | 4.39–6.72 | 3.28–5.22 | ||
20% POFA | 1326–1365 | 1288–1300 | - | 5.05–6.31 | 3.92–4.85 | ||
[28] | Granulated blast-furnace slag as cement replacement, 28-day strength | 100% cement | - | 1167–1282 | - | 4.0–6.4 | 3.42–4.99 |
50% cement, 50% slag | - | 1192–1298 | - | 4.2–6.6 | 3.52–5.08 | ||
[41] | Pulverized fly ash (PFA) as cement replacement | 0 to 60% PFA | - | 1300–1650 | - | 3.0–15.9 | 2.30–10.60 |
[42] | Egg shell as cement replacement | 0, 2.5, 5, 7.5 & 10% of ES | 1208–1222 | 1161–1243 | 0.99–1.05 | 1.36–4.31 | 1.15–3.56 |
Mineral | Cement | Pozzolanic Materials | ||||||
---|---|---|---|---|---|---|---|---|
POFA | GGBFS | PFA [48] | ES | |||||
[49] | [50] | [28] | Bituminous | Subbituminous | Lignite | |||
CaO | 55–66% | 4% | 35.2% | 42.9% | 1–12% | 5–30% | 15–40% | 97% |
SiO2 | 20–24% | 54% | 27.5% | 32.5% | 20–60% | 40–60% | 15–45% | - |
Al2O3 | 0–8% | 6% | 10.6% | 13.8% | 5–35% | 20–30% | 20–25% | - |
MgO | 5% | 3% | 7.1% | 5.8% | 0.43–1.17% | 1.21–1.76% | 3.1% | - |
Name of Foam Agent | Property | Advantages | Density of | Refs. | ||
---|---|---|---|---|---|---|
Natural | Synthetic | Foam | Concrete | |||
Genfil Herbal resin based | √ | - | Upgraded high-yield herbal resin based foam agent Stable foam | 80 to 95 g/L | 115–1600 kg/m3 | http://www.foam-concrete.com |
LithoFoam protein based | √ | - | Improved silicone oil resistance, frost resistance -Highly active proteins | 20–180 kg/m³ | 1600–1675 kg/m³ | http://www.luca-industries.com |
CMX™ Synthetic based | - | √ | Performs well with a wide variety of ad-mixtures withstand higher lifts | 1.02 kg/L | 500–1600 kg/m³ | https://www.richway.com |
Sakshi CLC Synthetic Based | - | √ | Air entrainers Set accelerator Water Reducer | 0.2–0.7 L/m³ | 300–1300 kg/m³ | https://www.sakshichemsciences.in/ |
EABASSOC Synthetic based | - | √ | It highly concentrated, highly efficient liquid | 0.3–0.6 L/m³ | 250–1800 kg/m³ | https://www.eabassoc.co.uk |
Varimax Synthetic based | - | √ | To offer a variable high dilution ratio | 1:40 | 150–1450 kg/m³ | https://www.vermillionassociates.com |
LITEBUILT Synthetic based | - | √ | Quick turn-around in the production process. No hateful or toxic fume release | 2–3 wt % of the mixture. | 300–1600 kg/m3 | http://www.litebuilt.com/ |
Refs. | Density kg/m3 | Volume of Foam Agent | Type Materials Added | Compressive Strength at 28 Days * (MPa) | |
---|---|---|---|---|---|
By kg/m3 | By Dilution with Water | ||||
[63] | 600 | 75–80 g/L | 1:33 | Lightweight aggregate, PP fibers, sand, and cement | 25–58 |
541–1003 | - | 0.5–3% | Sludge aggregate | 25 | |
[64] | 1000 | Cement–sand | 1.82–16.73 | ||
[65] | 1150 | 75–80 g/L | - | Sand, fly ash, and cement | 10–26 |
[53] | 982–1185 | 40 | 0.5–3% | Sand, fly ash, and cement | 1.0–6.0 |
[66] | 650–1200 | 40 | 1:5 | Sand, fly ash, cement | 20–43 |
[53] | 280–1200 | 40 | 1:5 | Sand, fly ash, and OPC | 0.6–1091days |
[67] | 800–1350 | 40 | 1:5 | Silica fume (10–15%) | P4.73 |
1380 | 0.25% | Fine sand, fly ash, lime, and PP fiber | 15–3077days 0.2–1180days 1.6–4.6180days | ||
[66] | 800–1500 | 70 | 1:40 | PP fibers, sand and cement | 10–50 |
[52] | 70 | 1:40 | Course sand and OPC | 1.0–7.0 | |
[46] | 650–1200 | 40 | 1:5 | Partially (OPC-fly ash) | 2.0–18 |
[54,58] | 1000–1500 | 70 | - | Fly ash, ultra-fine silica filler, and silica fume | 85.4365days |
[68] | 70 | 1:5 | Fly ash (fine and coarse) | 4.0–7.37days 1.0–2.07days 0.5–107days | |
[53,54] | PP fiber and Silica fume | 39.6–91.3 | |||
[69] | 1000–1400 | 50 | - | Fly ash, cement and sand | 4.0–19 |
[70] | 1400 | 70 | 1:2 | 5.5–9.3 | |
1200–1600 | 70 | - | Fine sand and OPC | 2.0–11 | |
1710 | 50 | - | Fly ash, fine sand, and | 5.4–13.2 | |
400–1800 | 50 | - | Fly ash, sand, and cement, | 44180days | |
[46,58] | 1400–1800 | 50 | 1:35 | Lightweight aggregate, sand, and cement | 9.9–39.5 |
[45] | 59 | 13.8–48 | |||
[53] | 50 | - | Fly ash only | 25 | |
[71,72] | 80 | 1:35 | 75% fly ash, sand, and cement | 40 | |
[73] | 1500–1800 | 60 | - | Sand, aggregate and cement | 1.8–17.9 |
[74] | 1837 | 30–50 | 1:5 | 28 |
Refs. | Investigation Variable(s) | Density, kg/m3 | Performance Index, MPa | Strength | ||
---|---|---|---|---|---|---|
Fresh | Hardened | MPa | ||||
Aggregate Grading | ||||||
[30] | Different charcoal proportion and particle size, passing through size 2.36, 0.6 and 0.1 mm (cement:sand = 1:1, 1:3) | 1:1-P2.36 * | 785 | 929 | 0.6 | 0.56 |
2:1-P2.36 * | 775 | 1080 | 4.29 | 4.63 | ||
2:1-P0.60 * | 950 | 1382 | 8.23 | 11.37 | ||
1:1-P0.60 * | 965 | 1401 | 6.35 | 8.90 | ||
1:3-P0.60 * | 900 | 1264 | 2.90 | 3.66 | ||
2:1-P0.10 *** | 825–1120 | 1168–1509 | 3.28–10.46 | 3.83–15.35 | ||
1:3-P0.10 ** | 945 | 1061–1080 | 3.63–4.63 | 3.91–5.00 | ||
[29] | Grading of sand with diverse water-cement ratio, 7-day strength | P1.18 ** | - | 1881–1928 | 8.80–12.76 | 24.2–42.0 |
P0.60 ** | - | 1905–1931 | 8.80–11.86 | 17.0–22.6 | ||
P0.90 ** | - | 1904–1931 | 8.80–11.27 | 17.0–21.7 | ||
[38] | Sand grading with different water-cement ratio, 14-day strength | P2.36 *** | 1261–1352 | 1259–1350 | 2.98–4.06 | 2.30–3.01 |
P1.18 *** | 1261–1352 | 1259–1349 | 2.97–3.98 | 2.31–2.95 | ||
P0.90 *** | 1287–1399 | 1290–1345 | 3.19–4.39 | 2.47–3.36 | ||
P0.60 *** | 1326–1352 | 1308–1352 | 4.27–4.52 | 3.19–3.43 | ||
[32] | Quarry dust as sand replacement with different W/C ratio (100% refined river sand, 75% refined quarry dust and 25% refined river sand, 100% refined quarry dust) | 0QD-0.52 | 1324 | 1271 | 5.21 | 4.10 |
0QD-0.54 | 1336 | 1269 | 5.29 | 4.17 | ||
0QD-0.56 | 1343 | 1330 | 5.80 | 4.36 | ||
0QD-0.58 | 1361 | 1345 | 5.53 | 4.11 | ||
75QD-0.52 | 1345 | 1339 | 5.79 | 4.32 | ||
75QD-0.54 | 1308 | 1280 | 6.38 | 4.98 | ||
75QD-0.56 | 1312 | 1301 | 6.46 | 4.97 | ||
75QD-0.58 | 1305 | 1295 | 5.68 | 4.39 | ||
100QD-0.52 | 1346 | 1334 | 6.76 | 5.07 | ||
100QD-0.54 | 1305 | 1279 | 6.85 | 5.36 | ||
100QD-0.56 | 1336 | 1301 | 6.34 | 4.87 | ||
100QD-0.58 | 1344 | 1323 | 6.15 | 4.65 | ||
[75,76] | Steel slag as sand replacement (0 to 100%) | 0SS | - | 1677 | 24.8 | 14.8 |
25SS | - | 1652 | 18.3 | 11.1 | ||
50SS | - | 1638 | 15.6 | 9.5 | ||
75SS | - | 1617 | 11.5 | 7.1 | ||
100SS | - | 1639 | 9.8 | 6.0 |
Refs. | Equation | Symbols |
---|---|---|
[105] | K = empirical constant, = water/cement ratio n = gel–space ratio strength, = ash/cement ratio | |
[71,72] | Pcr = the critical porosity corresponding to zero-length Ks = a constant of Schiller’s equation | |
[106] | K = the gel intrinsic strength n = a constant of the Balshin expression g = the Power’s gel–space ratio | |
[82] | Po = the strength at zero porosity | |
[63] | fc7 = 7-day compressive strength |
Refs. | Equation | Specifications |
---|---|---|
[95,109] | Pauw’s equation W = the concrete density fc = the compressive cylinder strength | |
[95] | Fly ash as fine aggregate | |
[112] | Density in the range between 200 and 800 kg/m3 | |
[63] | γcon = concrete unit weight Used polymer foam agent with Poisson’s average ratio of 0.2 |
Refs. | Concrete Mix | Concrete Density, kg/m3 | Reinforcement Bar, mm | Bond Behavior | Compressive Strength, MPa | |
---|---|---|---|---|---|---|
Length, mm | Strength, MPa | |||||
[155] | Aerated concrete | 600 | 8 | 450 | 1.17–1.34 | - |
[156] | Aerated concrete | - | 13.7 Aramid, 12.7 carbon, 12.1 fiberglass, 12.0 rounded bar, 12.2 deformed bar | 125 100 | 5.4–10.2 5.1–8.8 | - |
[157] | Lightweight aggregate FC (expanded clay, shale) | 300–1200 | - | - | >0.5fcu | - |
[158,159,160] | FC | 800–1200 | Steel strip G250 50 × 0.75 × 150 | 50 | 0.37–0.86 | 0.91–8.80 |
[152,153,154] | FC | 1500 | Cold-formed steel strip 600 × 50 × 2 | 200 | 1.64–2.05 | 6.63–9.72 |
[161] | Polystyrene foam lightweight concrete | 1886, 2294 | 12, 16, 22 | 48, 64 | 13.26–27.20 | 24, 27 |
[149,150] | FC | 1200–1600 | 10, 12, 20 | 30–100 | 1.19–11.64 | 10.41–32.26 |
Ref. | Binder | Aggregate | Density, kg/m3 | Compressive Strength, MPa | Split Tensile Strength, MPa |
---|---|---|---|---|---|
[6,41,46,67,96] | Reactive high-performance concrete (RHPC) | Unspecific | 1958.3 | 79 | - |
1817.3 | 59 | - | |||
1450.3 | 32 | - | |||
RHPC, ungraded fly ash | 1751 | 43.3 | - | ||
1715.5 | 37.5 | - | |||
[174] | OPC + GGBFS + polycarboxylate copolymer (water reducing agent) | Without sand | 1600 | 40.1 | - |
1600 | 42.3 | - | |||
1600 | 45.8 | - | |||
1600 | 47 | - | |||
1600 | 44.7 | - | |||
1600 | 48.3 | - | |||
1600 | 51.8 | - | |||
1300 | 48.8 | - | |||
1300 | 20.8 | - | |||
1300 | 23 | - | |||
1300 | 28.7 | - | |||
1300 | 28.1 | - | |||
1300 | 25.7 | - | |||
- | 47 | 2.7 | |||
- | 48.5 | 2.8 | |||
- | 37.2 | 2.2 | |||
[58] | OPC, silica fume, fly ash | Polypropylene | 1000–1500 | 20–50 | >2.0 |
[3,10,11,12] | OPC | River sand | 1800–1900 | 24.83–25.73 | ~2.1 |
[101,175] | Cement + water-reducing admixture | Sand, polypropylene fiber | 1974.9 | 22.5 | 3.06 |
2028.0 | 26.4 | 4.33 |
Ref. | Experimental Ultimate Moment, Mu (kNm) | Theoretical Ultimate Moment from BS, MBS (kNm) | Ratio, Mu/MBS | Load at 1st Crack, kN | Characteristic Strength, fck (MPa) | Performance Index, MPa |
---|---|---|---|---|---|---|
[31] Slab | 30.34 | 19.4 | 1.56 | 9.8 | 36.4 | 21.41 |
21.97 | 19.4 | 1.13 | 0.9 | 40.9 | 24.06 | |
26.28 | 36.91 | 0.71 | 10.3 | 39.4 | 23.18 | |
26.43 | 37.28 | 0.71 | 4.4 | 43.7 | 25.71 | |
33.28 | 54.31 | 0.61 | 4 | 38.6 | 22.71 | |
35.02 | 54.67 | 0.64 | 9.4 | 42.5 | 25.00 | |
[108] Beam | 4.4 | 4.13 | 1.07 | 75 | 15.43 | 9.28 |
4.1 | 3.88 | 1.06 | 70 | 14.49 | 8.73 | |
4.1 | 3.75 | 1.09 | 70 | 14.01 | 8.52 | |
3.81 | 3.55 | 1.07 | 65 | 13.26 | 8.17 | |
3.66 | 3.48 | 1.05 | 62.5 | 12.98 | 8.10 | |
[177] Beam | 13.05 | 8.488 | 1.54 | - | 27.07 | 15.29 |
12.6 | 8.448 | 1.49 | - | 26.26 | 14.84 |
Behavior/Codes | BS 8110 | Eurocode 2 | ACI 318 |
---|---|---|---|
Pre-requirement | Concrete strength classes ≥LC20/22 | Concrete density <2000 kg/m3. Not applicable to aerated concrete or open structures | Compressive strength: 17 MPa (general) and 20.7 MPa (special moment frame) |
Shear | LC20/22: Table 5.3 from 8110-2 [144] <LC25/28: 0.8 of the values of Table 3.8 from 8110-1 [144] Limitation: no case should the shear stress exceed the lesser of 0.63 √fcu or 4 N/mm2 | Crushing resistance: reduction factor of Equation 11.6.6N [145] | Modification factor according to Table 19.2.4.2 [146] |
Flexural | Not specified | Not specified | Modification factor according to Table 19.2.4.2 [146] |
Torsion | Clause 2.4 8110-2 and 0.8 of values of Table 2.3. [144] | Shear calculation is according to clause 11.6.2(1) [145] | Modification factor according to Table 19.2.4.2 [146] |
Compression | Clause 5.7 and 5.8 [144]: column and wall-stocky and slender members design. Equation 34 BS 8110-1 [144], divisor 2000 is replaced by 1200 | Not specified | Modification factor according to Table 19.2.4.2 [146] |
Deflection | Design according Section 3 BS 8110-2 [144] Check with span/effective depth ratio clause 3.4.6.3 BS 8110-1 [144] | Span/effective depth should be multiplied by ƞE0.15 | - |
Codes | Shear | Flexural | Torsion | Compression | Deflection Control |
---|---|---|---|---|---|
Lightweight aggregate | |||||
ACI 318 | 0.75 | 0.75 | 0.75 | 0.75 | - |
BS 8110 | 0.80 | - | 0.8 | - | 0.85 |
Eurocode 2 | Equation 11.6.2 and Equation 11.6.5 [145] | - | Equation 11.6.6N [145] | - | - |
FC | |||||
ACI 318 | 0.75–0.85 | 0.75–0.85 | 0.75–0.85 | 0.75–0.85 | - |
Previous research | 0.9–5.1 a | 0.60–1.56 b | - | - | 0.71–0.83 c |
Suggestion for FC | 0.75 | 0.60 | 0.75 | 0.75 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amran, M.; Huei Lee, Y.; Vatin, N.; Fediuk, R.; Poi-Ngian, S.; Yong Lee, Y.; Murali, G. Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review. Crystals 2020, 10, 948. https://doi.org/10.3390/cryst10100948
Amran M, Huei Lee Y, Vatin N, Fediuk R, Poi-Ngian S, Yong Lee Y, Murali G. Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review. Crystals. 2020; 10(10):948. https://doi.org/10.3390/cryst10100948
Chicago/Turabian StyleAmran, Mugahed, Yeong Huei Lee, Nikolai Vatin, Roman Fediuk, Shek Poi-Ngian, Yee Yong Lee, and Gunasekaran Murali. 2020. "Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review" Crystals 10, no. 10: 948. https://doi.org/10.3390/cryst10100948
APA StyleAmran, M., Huei Lee, Y., Vatin, N., Fediuk, R., Poi-Ngian, S., Yong Lee, Y., & Murali, G. (2020). Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review. Crystals, 10(10), 948. https://doi.org/10.3390/cryst10100948