Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mesomorphic Property of the SCLCPs
2.2. Optical Property and Morphology of the SCLCPs
2.3. Device Applications of the SCLCP for Anti-Counterfeiting Powder and Fiber
3. Experimental Section
3.1. Materials
3.2. Measurements
3.3. Preparation of the SCLCP Anti-Counterfeiting Powder and Fiber
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boudeta, B.; Binet, C.; Mitov, M.; Bourgerette, C.; Boucher, E. Microstructure of variable pitch cholesteric films and its relationship with the optical properties. Eur. Phys. J. E 2000, 2, 247–253. [Google Scholar] [CrossRef]
- Broer, D.J. Deformed chiral-nematic networks obtained by polarized excitation of a dichroic photoinitiator. Curr. Opin. Solid State Mater. 2002, 6, 553–561. [Google Scholar] [CrossRef]
- Bartolino, R.; Scaramuzza, N.; Lucchetta, D.E.; Barna, E.S.; Ionescu, A.T.; Blinov, L.M. Polarity sensitive electrooptical response in a nematic liquid crystal-polymer mixture. J. Appl. Phys. 1999, 85, 2870–2874. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, S.; Yuan, W.; Zhao, Z.; Duan, A.; Xu, C.; Jiang, L.; Song, Y.; Zhu, D. Photo- and Proton-Dual-Responsive Fluorescence Switch Based on a Bisthienylethene-Bridged Naphthalimide Dimer and Its Application in Security Data Storage. Eur. J. Org. Chem. 2007, 2064–2067. [Google Scholar] [CrossRef]
- Xuan, R.; Ge, J. Invisible photonic prints shown by water. J. Mater. Chem. 2012, 22, 367–372. [Google Scholar] [CrossRef]
- Ifa, D.R.; Gumaelius, L.M.; Eberlin, L.S.; Manicke, N.E.; Cooks, R.G. Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 2007, 132, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ma, X.; Lin, Z.; He, M.; Han, G.; Yang, C.; Xing, Z.; Zhang, S.; Zhang, X. Imaging Mass Spectrometry with a Low-Temperature Plasma Probe for the Analysis of Works of Art. Angew. Chem. Int. Ed. 2010, 49, 4435–4437. [Google Scholar] [CrossRef] [PubMed]
- Zschieschang, U.; Yamamoto, T.; Takimiya, K.; Kuwabara, H.; Ikeda, M.; Sekitani, T.; Someya, T.; Klauk, H. Organic electronics on banknotes. Adv. Mater. 2011, 23, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Bhansali, U.S.; Alshareef, H.N. High-performance non-volatile organic ferroelectric memory on banknotes. Adv. Mater. 2012, 24, 2165–2170. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, J.; Park, I.S.; Jeon, S.; Lee, J.; Kim, J. Recent functional material based approaches to prevent and detect counterfeiting. J. Mater. Chem. C 2013, 1, 2388–2403. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, G.; Xu, Q.; Han, F.; Huang, Q. Color Fine-Tuning of CNTs@AAO Composite Thin Films via Isotropically Etching Porous AAO Before CNT Growth and Color Modification by Water Infusion. Adv. Mater. 2010, 22, 2637–2641. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yang, Y.; Gu, J.; Li, Z.; Sun, H. Influence of Al substrate on the optical properties of porous anodic alumina films. Mater. Lett. 2012, 74, 137–139. [Google Scholar]
- Nakayama, K. Ohtsubo, Optical security device providing fingerprint and designed pattern indicator using fingerprint texture in liquid crystal. J. Opt. Eng. 2012, 51, 040506. [Google Scholar] [CrossRef] [Green Version]
- Li, W.S.; Shen, Y.; Chen, Z.J.; Cui, Q.; Li, S.S.; Chen, L.J. Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl. Opt. 2017, 56, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Ohtsubo, J. Optical security devices using nonuniform schlieren texture of UV-curable nematic liquid crystal. Appl. Opt. 2016, 55, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Vartak, S.; Eakin, J.N.; Faris, S.M. Surface anchoring effects on spectral broadening of cholesteric liquid crystal films. J. Appl. Phys. 2008, 104, 023108. Available online: https://aip.scitation.org/doi/full/10.1063/1.2957079 (accessed on 26 February 2020). [CrossRef]
- Lin, Y.; Yang, Y.; Shan, Y.; Gong, L.; Chen, J.; Li, S.; Chen, L. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors. Nanomaterials 2017, 7, 376. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Tondiglia, V.; Godman, N.; Middleton, C.; White, T. Blue-shifting Tuning of the Selective Reflection of Polymer Stabilized Cholesteric Liquid Crystals. Soft Matter 2017, 13, 5842–5848. [Google Scholar]
- Ji, Y.; Huang, Y.Y.; Terentjev, E.M. Dissolving and Aligning Carbon Nanotubes in Thermotropic Liquid Crystals. Langmuir 2011, 27, 13254–13260. [Google Scholar] [CrossRef]
- Yamazaki, H.; Takeda, M.; Kohno, Y.; Ando, H.; Urayama, K.; Takigawa, T. Dynamic Viscoelasticity of Poly(butyl acrylate) Elastomers Containing Dangling Chains with Controlled Lengths. Macromolecules 2011, 44, 8829–8834. [Google Scholar] [CrossRef]
- Hijnen, N.; Wood, T.A.; Wilson, D.; Clegg, P.S. Self-Organization of Particles with Planar Surface Anchoring in a Cholesteric Liquid Crystal. Langmuir 2010, 26, 13502–13510. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.S.; Zhang, B.Y.; Wang, Y.; Meng, F.B. Synthesis and phase behavior of side-chain liquid-crystalline polymers containing malachite green lactone groups. J. Polym. Sci. Pol. Chem. 2004, 42, 3870–3878. [Google Scholar] [CrossRef]
- Jana, R.N.; Cho, J.W. Synthesis and characterization of polyurethane–based side–chain cholesteric liquid crystal co-polymers. Fiber. Polym. 2009, 10, 569–575. [Google Scholar] [CrossRef]
- Meng, F.B.; Cheng, C.S.; Zhang, B.Y.; He, X.Z. Synthesis and characterization of a novel liquid crystal-bearing ionic mesogen. Liq. Cryst. 2005, 32, 1161–1167. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Cao, H.; Zhao, D.Y.; Hu, W.; He, W.L.; Yuan, X.T.; Xiao, J.M.; Zhang, H.Q.; Yang, H. Chiral nematic liquid crystals with helix inversion from (R)-1,1′-binaphthyl and cholesteryl ester moieties. Liq. Cryst. 2011, 38, 9–15. [Google Scholar] [CrossRef]
- Yao, W.H.; Gao, Y.Z.; Yuan, X.; He, B.F.; Yu, H.F.; Zhang, L.Y.; Zhi, Z.H.; He, W.L.; Yang, Z.; Yang, H.; et al. Synthesis and self-assembly behaviours of side-chain smectic thiol–ene polymers based on the polysiloxane backbone. J. Mater. Chem. C 2016, 4, 1425–1440. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | Mn, GPCa [×103] | PDI a | Tdb [°C] | Tgc [°C] | Tic [°C] |
---|---|---|---|---|---|
3HG8020 | 2.47 | 1.21 | 306.28 | 41.60 | 163.47 |
3HG2080 | 2.52 | 1.19 | 305.43 | 58.96 | 215.49 |
Sample | 3HG8020 [mg] | 3HG2080 [mg] | Xchol a | Selective Reflection Wavelength [nm] |
---|---|---|---|---|
3HG8020 | 102.7 | 0.0 | 20.0 | 1130.0 |
HG1 | 70.5 | 7.8 | 26.0 | 1015.0 |
HG2 | 17.3 | 18.0 | 50.0 | 794.0 |
HG3 | 11.5 | 103.5 | 74.0 | 625.0 |
3HG2080 | 0.0 | 113.2 | 80.0 | 560.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Feng, K.; Zhang, J.; Zhang, L. Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber. Crystals 2020, 10, 128. https://doi.org/10.3390/cryst10020128
Gao Y, Feng K, Zhang J, Zhang L. Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber. Crystals. 2020; 10(2):128. https://doi.org/10.3390/cryst10020128
Chicago/Turabian StyleGao, Yanzi, Ke Feng, Jin Zhang, and Lanying Zhang. 2020. "Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber" Crystals 10, no. 2: 128. https://doi.org/10.3390/cryst10020128
APA StyleGao, Y., Feng, K., Zhang, J., & Zhang, L. (2020). Side-Chain Liquid Crystal Co-Polymers for Angular Photochromic Anti-Counterfeiting Powder and Fiber. Crystals, 10(2), 128. https://doi.org/10.3390/cryst10020128