Nonclassical Nucleation and Crystallization
References
- Gibbs, J.W. On the Equilibrium of Heterogeneous Substances. Trans. Conn. Acad. Arts Sci. 1876, 3, 108–248. [Google Scholar] [CrossRef]
- Volmer, M.; Weber, A. Germ-formation in oversaturated figures. Zeitschrift für Physikalische Chemie-Stochiometrie und Verwandtschaftslehre 1926, 119, 277–301. [Google Scholar]
- Becker, R.; Döring, W. Kinetic treatment of germ formation in supersaturated vapour. Annalen der Physik 1935, 24, 719–752. [Google Scholar] [CrossRef]
- Frenkel, J. Statistical theory of condensation phenomena. J. Chem. Phys. 1939, 7, 200–201. [Google Scholar] [CrossRef]
- Zeldovich, J.B. On the theory of new phase formation, cavitation. Acta Physicochimica Urss 1943, 18, 1–22. [Google Scholar]
- Stranski, I.N. On the theory of crystal accretion. Zeitschrift für Physikalische Chemie-Stochiometrie und Verwandtschaftslehre 1928, 136, 259–278. [Google Scholar]
- Burton, W.K.; Cabrera, N.; Frank, F.C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Lond. Ser. a-Math. Phys. Sci. 1951, 243, 299–358. [Google Scholar] [CrossRef]
- Vekilov, P.G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2010, 2, 2346–2357. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, D.; Völkel, A.; Cölfen, H. Stable Prenucleation Calcium Carbonate Clusters. Science 2008, 322, 1819–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebauer, D. How Can Additives Control the Early Stages of Mineralisation? Minerals 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.K.; Fedorov, P.P.; Baranchikov, A.Y.; Osiko, V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 2014, 83, 1204–1222. [Google Scholar] [CrossRef]
- Sturm, E.V.; Cölfen, H. Mesocrystals: Past, Presence, Future. Crystals 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Sturm, S.; Siglreitmeier, M.; Wolf, D.; Vogel, K.; Gratz, M.; Faivre, D.; Lubk, A.; Buchner, B.; Sturm, E.V.; Cölfen, H. Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria. Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Seto, J.; Ma, Y.R.; Davis, S.A.; Meldrum, F.; Gourrier, A.; Kim, Y.Y.; Schilde, U.; Sztucki, M.; Burghammer, M.; Maltsev, S.; et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl. Acad. Sci. USA 2012, 109, 3699–3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oaki, Y.; Kotachi, A.; Miura, T.; Imai, H. Bridged nanocrystals in biominerals and their biomimetics: Classical yet modern crystal growth on the nanoscale. Adv. Funct. Mater. 2006, 16, 1633–1639. [Google Scholar] [CrossRef]
- Yuwono, V.M.; Burrows, N.D.; Soltis, J.A.; Penn, R.L. Oriented Aggregation: Formation and Transformation of Mesocrystal Intermediates Revealed. J. Am. Chem. Soc. 2010, 132, 2163–2165. [Google Scholar] [CrossRef] [PubMed]
- Schwahn, D.; Ma, Y.; Cölfen, H. Mesocrystal to single crystal transformation of D,L-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 2007, 111, 3224–3227. [Google Scholar] [CrossRef]
- Li, D.S.; Nielsen, M.H.; Lee, J.R.I.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012, 336, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.G.; Cölfen, H. Mesocrystals-Applications and potential. Curr. Opin. Colloid Interface Sci. 2014, 19, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Picker, A.; Nicoleau, L.; Burghard, Z.; Bill, J.; Zlotnikov, I.; Labbez, C.; Nonat, A.; Cölfen, H. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cölfen, H. Nonclassical Nucleation and Crystallization. Crystals 2020, 10, 61. https://doi.org/10.3390/cryst10020061
Cölfen H. Nonclassical Nucleation and Crystallization. Crystals. 2020; 10(2):61. https://doi.org/10.3390/cryst10020061
Chicago/Turabian StyleCölfen, Helmut. 2020. "Nonclassical Nucleation and Crystallization" Crystals 10, no. 2: 61. https://doi.org/10.3390/cryst10020061
APA StyleCölfen, H. (2020). Nonclassical Nucleation and Crystallization. Crystals, 10(2), 61. https://doi.org/10.3390/cryst10020061