Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis of 1,1,2,3-Tetramethyl-1H-Benzo[e]indol-3-Ium-Iodide
2.3. Synthesis of 1-TB
2.4. Synthesis of 2-TB
3. Results and Discussion
3.1. Environmental Stability and Solubility
3.2. Single Crystal Growth and Characterization
3.3. Macroscopic Second-Order Nonlinear Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Czarske, J.; Zhang, S.; Sampson, D.; Wang, W.; Liao, Y. International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors; SPIE—International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 19, pp. 514–522. [Google Scholar]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric Field poled organic electro-optic materials: State of the art and future prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Gulbahar, B. Theoretical analysis of magneto-inductive THz wireless communications and power transfer with multi-layer graphene nano-coils. IEEE Trans. Inf. Technol. B 2017, 3, 60–70. [Google Scholar] [CrossRef]
- Lin, W.H.; Wu, C.J.; Yang, T.J.; Chang, S.J. Terahertz intrinsic and effective surface impedances of high-temperature superconducting thin films. J. Electromagn. Wave 2010, 24, 2589–2603. [Google Scholar] [CrossRef]
- Lee, S.-C.; Kang, B.J.; Lee, J.-A.; Lee, S.-H.; Jazbinšek, M.; Yoon, W.; Yun, H.; Rotermund, F.; Kwon, O.-P. Single crystals based on hydrogen-bonding mediated cation-anion assembly with extremely large optical nonlinearity and their application for intense THz wave generation. Adv. Opt. Mater. 2018, 6, 1701258. [Google Scholar] [CrossRef]
- Song, N.-W.; Kang, T.I.; Jeoung, S.C.; Jeon, S.J.; Cho, B.R.; Kim, D. Improved method for measuring the first-order hyperpolarizability of organic NLO materials in solution by using the hyper-Rayleigh scattering technique. Chem. Phys. Lett. 1996, 261, 307–312. [Google Scholar] [CrossRef]
- Marder, S.R.; Perry, J.W.; Schaefer, W.P. Synthesis of organic salts with large second-order optical nonlinearities. Science 1989, 245, 626. [Google Scholar] [CrossRef]
- Mutter, L.; Brunner, F.D.; Yang, Z.; Jazbinšek, M.; Günter, P. Linear and nonlinear optical properties of the organic crystal DSTMS. Josa B 2007, 24, 2556–2561. [Google Scholar] [CrossRef]
- Kwon, S.J.; Jazbinsek, M.; Kwon, O.; Günter, P. Crystal growth and morphology control of OH1 organic electrooptic crystals. Cryst. Growth Des. 2010, 10, 1552–1558. [Google Scholar] [CrossRef]
- Suizu, K.; Miyamoto, K.; Yamashita, T.; Ito, H. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter. Opt. Lett. 2007, 32, 2885–2887. [Google Scholar] [CrossRef] [PubMed]
- Jazbinsek, M.; Ruiz, B.; Medrano, C.; Gunter, P. Broadband THz-wave generation with organic crystals OHI and DSTMS. In Proceedings of the Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC IEEE, Munich, Germany, 12–16 May 2013. [Google Scholar]
- Wu, B.; Cao, L.; Zhang, Z.; Fu, Q.; Xiong, Y. Terahertz electro-optic sampling in thick znte crystals below the reststrahlen band with a broadband femtosecond laser. IEEE Sci. Technol. 2018, 99, 1–7. [Google Scholar] [CrossRef]
- Uchida, H.; Oota, K.; Okimura, K.; Kawase, K.; Takeya, K. Single-cycle terahertz pulse generation from OH1 crystal via cherenkov phase matching. J. Infrared Millim. Terahertz Waves 2018, 39, 1–5. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H.; Lee, S.C.; Jazbinsek, M.; Miyamoto, K.; Omatsu, T.; Lee, Y.S.; Kwon, O. Terahertz phonon modes of highly efficient electro-optic phenyltriene OH1 crystals. J. Phys. Chem. C 2016, 120, 24360–24369. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kang, B.-J.; Kim, J.-S.; Yoo, B.-W.; Jeong, J.-H.; Lee, K.-H.; Jazbinsek, M.; Kim, J.W.; Yun, H.; Kim, J.; et al. New acentric core structure for organic electrooptic crystals optimal for efficient optical-to-THz conversion. Adv. Opt. Mater. 2015, 3, 756–762. [Google Scholar] [CrossRef]
- Kang, B.J.; Baek, I.H.; Lee, S.H.; Kim, W.T.; Lee, S.J.; Jeong, Y.U.; Kwon, O.P.; Rotermund, F. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz. Opt. Express 2016, 24, 11054–11061. [Google Scholar] [CrossRef]
- Kim, P.-J.; Jeong, J.-H.; Jazbinsek, M.; Choi, S.-B.; Baek, I.-H.; Kim, J.-T.; Rotermund, F.; Yun, H.; Lee, Y.S.; Günter, P.; et al. Highly efficient organic THz generator pumped at near-infrared: Quinolinium single crystals. Adv. Funct. Mater. 2012, 22, 200–209. [Google Scholar] [CrossRef]
- Lee, S.H.; Lu, J.; Lee, S.J.; Han, J.H.; Jeong, C.U.; Lee, S.C.; Li, X.; Jazbinsek, M.; Yoon, W.; Yun, H.; et al. Benzothiazolium single crystals: A new class of nonlinear optical crystals with efficient THz wave generation. Adv. Mater. 2017, 29, 1701748. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.J.; Jazbinsek, M.; Kang, B.J.; Rotermund, F.; Kwon, O.P. Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications. CrystEngComm 2016, 18, 7311–7318. [Google Scholar] [CrossRef]
- Yang, Z.; Mutter, L.; Stillhart, M.; Ruiz, B.; Aravazhi, S.; Jazbinsek, M.; Schneider, A.; Gramlich, V.; Günter, P. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater. 2007, 17, 2018–2023. [Google Scholar] [CrossRef]
- Li, X.; Yue, Y.; Wen, Y.; Yin, C.; Huo, F. Hemicyanine based fluorimetric and colorimetric pH probe and its application in bioimaging. Dye. Pigm. 2016, 134, 291–296. [Google Scholar] [CrossRef]
- Hu, Z.; Sun, Z.; Sun, H. Design of zinc porphyrin-perylene diimide donor-bridge-acceptor chromophores for large second-order nonlinear optical response: A theoretical exploration. Int. J. Quantum Chem. 2017, 118, e25536. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Zhang, H.; Wang, S.; Ao, Y.; Cui, Z. Molecular engineering of organic chromophores and polymers for enhanced bulk second-order optical nonlinearity. J. Mater. Chem. C 2017, 5, 4111–4122. [Google Scholar] [CrossRef]
- Brunner, F.D.; Kwon, O.P.; Kwon, S.J.; Jazbinsek, M.; Schneider, A.; Günter, P. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. Opt. Express 2008, 16, 16496–16508. [Google Scholar] [CrossRef]
- Yang, Z.; Ruiz, B.; Aravazhi, S.; Stillhart, M.; Jazbinsek, M.; Gramlich, V.; Günter, P. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics. Chem. Mater. 2007, 19, 3512–3518. [Google Scholar] [CrossRef]
- Goebel, T.; Prots, Y.U.; Haarmann, F. Refinement of the crystal structure of tetrasodium tetrasilicide, Na4Si4. Z. Für Krist. New Cryst. Struct. 2008, 223, 187–188. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ma, Q.; Zhou, Y.; Yang, Z.; Jazbinsek, M.; Bian, Y.; Ye, N.; Wang, D.; Cao, H.; He, W. Engineering of organic chromophores with large second-order optical nonlinearity and superior crystal growth ability. Cryst. Growth Des. 2015, 15, 5560–5567. [Google Scholar] [CrossRef]
- Wu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials. Dye. Pigm. 2014, 104, 15–23. [Google Scholar] [CrossRef]
- Yang, Z.; Ping, L.J.; Liu, X.; Shang, S.F.; Wang, D.; Cao, H.; He, W.L. Organic Salt Optical Crystal Containing Benzoindole Group and Its Preparation Method and Application. (In Chinese). China Patent CN201810777919.X, 11 December 2018. [Google Scholar]
Samples | λmax a (nm) | Melting Point (°C) | Molecular-Ordering Angle | Order Parameter cos3 (θp) | Crystal Structure (Point Group) | Powder SHG b |
---|---|---|---|---|---|---|
1-TB | 574 | 268 | 50 | 0.26 | Monclinic P21 | 0.76 |
2-TB | 574 | 265 | - | - | - | 0.58 |
DAST | 475 | 256 | 20 | 0.83 | Monclinic Cc | 1 |
DSTMS | 475 | 258 | 23 | 0.75 | Monclinic Cc | 1 |
P-BI-1 | 550 | 263 | 45 | 0.35 | Monclinic P21 | 1.14 |
Sample | SHG Intensity (a.u.) |
---|---|
DAST | 1 |
1-TB | 0.76 |
2-TB | 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Ping, L.; Li, R.; Shang, S.; Zhao, W.; Hai, M.; Cao, H.; Yuan, X.; Wang, D.; He, W.; et al. Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics. Crystals 2020, 10, 242. https://doi.org/10.3390/cryst10040242
Wen J, Ping L, Li R, Shang S, Zhao W, Hai M, Cao H, Yuan X, Wang D, He W, et al. Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics. Crystals. 2020; 10(4):242. https://doi.org/10.3390/cryst10040242
Chicago/Turabian StyleWen, Jiahui, Linjun Ping, Ruian Li, Shufang Shang, Weidong Zhao, Mingtan Hai, Hui Cao, Xiaotao Yuan, Dong Wang, Wanli He, and et al. 2020. "Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics" Crystals 10, no. 4: 242. https://doi.org/10.3390/cryst10040242
APA StyleWen, J., Ping, L., Li, R., Shang, S., Zhao, W., Hai, M., Cao, H., Yuan, X., Wang, D., He, W., & Yang, Z. (2020). Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics. Crystals, 10(4), 242. https://doi.org/10.3390/cryst10040242