Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Diameter in Cylindrical Pillars on the Switching Between Patterns
3.2. Electro-Optic Properties Depending on the Diameter and Height of Cylindrical Pillars
3.3. Effect of Square-Shaped Pillars on the Defect Array Formation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Muševič, I. Integrated and topological liquid crystal photonics. Liq. Cryst. 2014, 41, 418–429. [Google Scholar] [CrossRef]
- Bukusoglu, E.; Bedolla Pantoja, M.; Mushenheim, P.C.; Wang, X.; Abbott, N.L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 163–196. [Google Scholar] [CrossRef] [PubMed]
- de Gennes, P.-G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford University Press Press: Oxford, UK, 1993; ISBN 0198512856. [Google Scholar]
- Kléman, M. Defects in liquid crystals. Rep. Prog. Phys. 1989, 52, 555–654. [Google Scholar] [CrossRef]
- Poulin, P.; Stark, H.; Lubensky, T.C.; Weitz, D.A. Novel colloidal interactions in anisotropic fluids. Science 1997, 275, 1770–1773. [Google Scholar] [CrossRef] [Green Version]
- Nych, A.; Ognysta, U.; Škarabot, M.; Ravnik, M.; Žumer, S.; Muševič, I. Assembly and control of 3D nematic dipolar colloidal crystals. Nat. Commun. 2013, 4, 1489. [Google Scholar] [CrossRef]
- Luo, Y.; Beller, D.A.; Boniello, G.; Serra, F.; Stebe, K.J. Tunable colloid trajectories in nematic liquid crystals near wavy walls. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bowick, M.J.; Chandar, L.; Schiff, E.A.; Srivastava, A.M. The cosmological Kibble mechanism in the laboratory: String formation in liquid crystals. Science 1994, 263, 943–945. [Google Scholar] [CrossRef] [Green Version]
- Tkalec, U.; Ravnik, M.; Čopar, S.; Žumer, S.; Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science 2011, 333, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Senyuk, B.; Liu, Q.; He, S.; Kamien, R.D.; Kusner, R.B.; Lubensky, T.C.; Smalyukh, I.I. Topological colloids. Nature 2013, 493, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Brasselet, E. Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett. 2012, 108, 087801. [Google Scholar] [CrossRef] [PubMed]
- Serra, F.; Eaton, S.M.; Cerbino, R.; Buscaglia, M.; Cerullo, G.; Osellame, R.; Bellini, T. Nematic liquid crystals embedded in cubic microlattices: Memory effects and bistable pixels. Adv. Funct. Mater. 2013, 23, 3990–3994. [Google Scholar] [CrossRef]
- Lopez-Leon, T.; Bates, M.A.; Fernandez-Nieves, A. Defect coalescence in spherical nematic shells. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2012, 86, 030702. [Google Scholar] [CrossRef] [PubMed]
- Lavrentovich, O.D. Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops. Liq. Cryst. 1998, 24, 117–125. [Google Scholar] [CrossRef]
- Kamien, R.D. The geometry of soft materials: A primer. Rev. Mod. Phys. 2002, 74, 953–971. [Google Scholar] [CrossRef] [Green Version]
- Stein, D.L. Topological theorem and its applications to condensed matter systems. Phys. Rev. A 1979, 19, 1708–1711. [Google Scholar] [CrossRef]
- Keber, F.C.; Loiseau, E.; Sanchez, T.; DeCamp, S.J.; Giomi, L.; Bowick, M.J.; Marchetti, M.C.; Dogic, Z.; Bausch, A.R. Topology and dynamics of active nematic vesicles. Science 2014, 345, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Serra, F. Curvature and defects in nematic liquid crystals. Liq. Cryst. 2016, 43, 1920–1936. [Google Scholar] [CrossRef]
- Peng, C.; Turiv, T.; Guo, Y.; Wei, Q.H.; Lavrentovich, O.D. Command of active matter by topological defects and patterns. Science 2016, 354, 882–885. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.S.; Pelcovits, R.A.; Rosenblatt, C. Creating arbitrary arrays of two-dimensional topological defects. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2014, 90, 052501. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Jampani, V.S.R.; Tanaka, C.; Sakurai, N.; Sakane, S.; Le, K.V.; Araoka, F.; Orihara, H. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 2016, 7, 13238. [Google Scholar] [CrossRef] [PubMed]
- Migara, L.K.; Song, J.-K. Standing wave-mediated molecular reorientation and spontaneous formation of tunable, concentric defect arrays in liquid crystal cells. NPG Asia Mater. 2018, 10, e459. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Serra, F. Tunable dynamic topological defect pattern formation in nematic liquid crystals. Adv. Opt. Mater. 2020, 8, 1900991. [Google Scholar] [CrossRef]
- Kim, M.S.; Serra, F. Tunable large-scale regular array of topological defects in nematic liquid crystals. RSC Adv. 2018, 8, 35640–35645. [Google Scholar] [CrossRef] [Green Version]
- Beller, D.A.; Gharbi, M.A.; Liu, I.B. Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals. Soft Matter 2015, 11, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Čopar, S.; Tkalec, U.; Yoon, D.K. Mosaics of topological defects in micropatterned liquid crystal textures. Sci. Adv. 2018, 4, eaau8064. [Google Scholar] [CrossRef] [Green Version]
- Lohr, M.A.; Cavallaro, M., Jr.; Beller, D.A.; Stebe, K.J.; Kamien, R.D.; Collings, P.J.; Yodh, A.G. Elasticity-dependent self-assembly of micro-templated chromonic liquid crystal films. Soft Matter 2014, 10, 3477–3484. [Google Scholar] [CrossRef] [Green Version]
a1 (μm) | 4 | 6 | 8 | ||||||
h2 (μm) | 2 | 3 | 5 | 2 | 3 | 5 | 2 | 3 | 5 |
f3 (Hz) | 220 | 240 | 240 | 210 | 220 | 220 | 200 | 200 | 180 |
V4 (V) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
τon5 (s) | 0.49 | 0.34 | 0.26 | 0.44 | 0.27 | 0.28 | 0.28 | 0.28 | 0.37 |
τoff6 (s) | 0.24 | 0.19 | 0.14 | 0.17 | 0.16 | 0.16 | 0.19 | 0.20 | 0.19 |
τon error | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 |
τoff error | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Serra, F. Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars. Crystals 2020, 10, 314. https://doi.org/10.3390/cryst10040314
Kim M, Serra F. Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars. Crystals. 2020; 10(4):314. https://doi.org/10.3390/cryst10040314
Chicago/Turabian StyleKim, MinSu, and Francesca Serra. 2020. "Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars" Crystals 10, no. 4: 314. https://doi.org/10.3390/cryst10040314
APA StyleKim, M., & Serra, F. (2020). Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars. Crystals, 10(4), 314. https://doi.org/10.3390/cryst10040314