2D Layer Arrangement of Solely [HS-HS] or [LS-LS] Molecules in the [HS-LS] State of a Dinuclear Fe(II) Spin Crossover Complex
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Synthesis
3.2. Crystal Structures
3.3. Variable-Temperature Magnetic Susceptibility Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kahn, O.; Martinez, C.J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science 1998, 279, 44–48. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119. [Google Scholar] [CrossRef] [PubMed]
- Linares, J.; Codjovi, E.; Garcia, Y. Pressure and Temperature Spin Crossover Sensors with Optical Detection. Sensors 2012, 12, 4479–4492. [Google Scholar] [CrossRef] [PubMed]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [Green Version]
- Halcrow, M.A. Spin-Crossover Materials: Properties and Applications; Halcrow, M.A., Ed.; John Wiley & Sons Ltd.: Oxford, UK, 2013; ISBN 9781118519301. [Google Scholar]
- Gütlich, P. Spin Crossover - Quo Vadis? Eur. J. Inorg. Chem. 2013, 2013, 581–591. [Google Scholar] [CrossRef]
- Manrique-Juárez, M.D.; Rat, S.; Salmon, L.; Molnár, G.; Quintero, C.M.; Nicu, L.; Shepherd, H.J.; Bousseksou, A. Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coord. Chem. Rev. 2016, 308, 395–408. [Google Scholar] [CrossRef]
- Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 2016, 8, 644–656. [Google Scholar] [CrossRef]
- Senthil Kumar, K.; Ruben, M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Ruben, M.; Kumar, K.S. Sublimable Spin Crossover Complexes: From Spin-State Switching to Molecular Devices. Angew. Chemie 2019, ange.201911256. [Google Scholar] [CrossRef]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and Optical Switching of Iron(II) Complexes. Angew. Chemie Int. Ed. Engl. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Gütlich, P.; Goodwin, H.A. Spin Crossover—An Overall Perspective. In Spin Crossover in Transition Metal Compounds I; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 1, pp. 1–47. [Google Scholar]
- Hauser, A. Ligand Field Theoretical Considerations. In Spin Crossover in Transition Metal Compounds I; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 49–58. [Google Scholar]
- Kröber, J.; Codjovi, E.; Kahn, O.; Grolière, F.; Jay, C. A Spin Transition System with a Thermal Hysteresis at Room Temperature. J. Am. Chem. Soc. 1993, 115, 9810–9811. [Google Scholar] [CrossRef]
- Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridier, K.; Molnár, G.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Hysteresis, nucleation and growth phenomena in spin-crossover solids. Solid State Sci. 2017, 74, A1–A22. [Google Scholar] [CrossRef]
- Galet, A.; Gaspar, A.B.; Muñoz, M.C.; Real, J.A. Influence of the counterion and the solvent molecules in the spin crossover system [Co(4-terpyridone)2]Xp·nH2O. Inorg. Chem. 2006, 45, 4413–4422. [Google Scholar] [CrossRef]
- Real, J.A.; Gaspar, A.B.; Niel, V.; Muñoz, M.C. Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev. 2003, 236, 121–141. [Google Scholar] [CrossRef]
- Carmen Muñoz, M.; Antonio Real, J. Polymeric Spin-Crossover Materials. In Spin-Crossover Materials: Properties and Applications; Halcrow, M.A., Ed.; John Wiley & Sons Ltd.: Oxford, UK, 2013; pp. 121–146. ISBN 9781119998679. [Google Scholar]
- Wu, X.-R.; Shi, H.-Y.; Wei, R.-J.; Li, J.; Zheng, L.-S.; Tao, J. Coligand and Solvent Effects on the Architectures and Spin-Crossover Properties of (4,4)-Connected Iron(II) Coordination Polymers. Inorg. Chem. 2015, 54, 3773–3780. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Muñoz, M.C.; Real, J.A. Dinuclear iron(ii) spin crossover compounds: Singular molecular materials for electronics. J. Mater. Chem. 2006, 16, 2522–2533. [Google Scholar] [CrossRef]
- Murray, K.S. Advances in Polynuclear Iron(II), Iron(III) and Cobalt(II) Spin-Crossover Compounds. Eur. J. Inorg. Chem. 2008, 2008, 3101–3121. [Google Scholar] [CrossRef]
- Olguín, J.; Brooker, S. Spin-Crossover in Discrete Polynuclear Complexes. In Spin-Crossover Materials: Properties and Applications; Halcrow, M.A., Ed.; John Wiley & Sons Ltd.: Oxford, UK, 2013; pp. 77–120. ISBN 9781119998679. [Google Scholar]
- Hogue, R.W.; Singh, S.; Brooker, S. Spin crossover in discrete polynuclear iron(ii) complexes. Chem. Soc. Rev. 2018, 47, 7303–7338. [Google Scholar] [CrossRef] [Green Version]
- Real, J.A.; Bolvin, H.; Bousseksou, A.; Dworkin, A.; Kahn, O.; Varret, F.; Zarembowitch, J. Two-step spin crossover in the new dinuclear compound [Fe(bt)(NCS)2]2bpym, with bt = 2,2’-bi-2-thiazoline and bpym = 2,2’-bipyrimidine: Experimental investigation and theoretical approach. J. Am. Chem. Soc. 1992, 114, 4650–4658. [Google Scholar] [CrossRef]
- Ruben, M.; Breuning, E.; Gisselbrecht, J.-P.; Lehn, J.-M. Multilevel Molecular Electronic Species: Electrochemical Reduction of a [2 × 2] CoII4 Grid-Type Complex by 11 Electrons in 10 Reversible Steps. Angew. Chemie 2000, 39, 4139–4142. [Google Scholar] [CrossRef]
- Breuning, E.; Ruben, M.; Lehn, J.; Renz, F.; Garcia, Y.; Ksenofontov, V.; Gütlich, P.; Wegelius, E.; Rissanen, K. Spin Crossover in a Supramolecular Fe4II [2 × 2] Grid Triggered by Temperature, Pressure, and Light. Angew. Chemie Int. Ed. 2000, 39, 2504–2507. [Google Scholar] [CrossRef]
- Létard, J.-F.; Guionneau, P.; Goux-Capes, L. Towards Spin Crossover Applications. In Spin Crossover in Transition Metal Compounds III; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 1, pp. 221–249. [Google Scholar]
- Klingele, M.H.; Moubaraki, B.; Cashion, J.D.; Murray, K.S.; Brooker, S. The first X-ray crystal structure determination of a dinuclear complex trapped in the [low spin–high spin] state: [Fe II 2 (PMAT) 2](BF 4) 4 ·DMF. Chem. Commun. 2005, 2, 987–989. [Google Scholar] [CrossRef]
- Herold, C.F.; Carrella, L.M.; Rentschler, E. A Family of Dinuclear Iron(II) SCO Compounds Based on a 1,3,4-Thiadiazole Bridging Ligand. Eur. J. Inorg. Chem. 2015, 2015, 3632–3636. [Google Scholar] [CrossRef]
- Herold, C.F.; Shylin, S.I.; Rentschler, E. Solvent-dependent SCO Behavior of Dinuclear Iron(II) Complexes with a 1,3,4-Thiadiazole Bridging Ligand. Inorg. Chem. 2016, 55, 6414–6419. [Google Scholar] [CrossRef]
- Köhler, C.; Rentschler, E. The First 1,3,4-Oxadiazole Based Dinuclear Iron(II) Complexes Showing Spin Crossover Behavior with Hysteresis. Eur. J. Inorg. Chem. 2016, 2016, 1955–1960. [Google Scholar] [CrossRef]
- Fürmeyer, F.; Carrella, L.M.; Ksenofontov, V.; Möller, A.; Rentschler, E. Phase Trapping in Multistep Spin Crossover Compound. Inorg. Chem. 2020, 59, 2843–2852. [Google Scholar] [CrossRef] [PubMed]
- Eaborn, C. Purification of Laboratory Chemicals. J. Organomet. Chem. 1981, 213, C62. [Google Scholar] [CrossRef]
- Cobas, J.C.; Sardina, F.J. Nuclear magnetic resonance data processing. MestRe-C: A software package for desktop computers. Concepts Magn. Reson. 2003, 19A, 80–96. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Hogue, R.W.; Feltham, H.L.C.; Miller, R.G.; Brooker, S. Spin Crossover in Dinuclear N 4 S 2 Iron(II) Thioether–Triazole Complexes: Access to [HS-HS], [HS-LS], and [LS-LS] States. Inorg. Chem. 2016, 55, 4152–4165. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, P.; Spek, A.L. BYPASS: An effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr. Sect. A Found. Crystallogr. 1990, 46, 194–201. [Google Scholar] [CrossRef]
- Kitchen, J.A.; Olguín, J.; Kulmaczewski, R.; White, N.G.; Milway, V.A.; Jameson, G.N.L.; Tallon, J.L.; Brooker, S. Effect of N 4 -Substituent Choice on Spin Crossover in Dinuclear Iron(II) Complexes of Bis-Terdentate 1,2,4-Triazole-Based Ligands. Inorg. Chem. 2013, 52, 11185–11199. [Google Scholar] [CrossRef]
- Ortega-Villar, N.; Thompson, A.L.; Muñoz, M.C.; Ugalde-Saldívar, V.M.; Goeta, A.E.; Moreno-Esparza, R.; Real, J.A. Solid- and Solution-State Studies of the Novel μ-Dicyanamide-Bridged Dinuclear Spin-Crossover System {[(Fe(bztpen)]2[μ-N(CN)2]}(PF6)3⋅n H2O. Chem.-A Eur. J. 2005, 11, 5721–5734. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Ksenofontov, V.; Reiman, S.; Gütlich, P.; Thompson, A.L.; Goeta, A.E.; Muñoz, M.C.; Real, J.A. Mössbauer Investigation of the Photoexcited Spin States and Crystal Structure Analysis of the Spin-Crossover Dinuclear Complex [{Fe(bt)(NCS)2}2bpym] (bt=2,2′-Bithiazoline, bpym=2,2′-Bipyrimidine). Chem.-A Eur. J. 2006, 12, 9289–9298. [Google Scholar] [CrossRef]
- Verat, A.Y.; Ould-Moussa, N.; Jeanneau, E.; Le Guennic, B.; Bousseksou, A.; Borshch, S.A.; Matouzenko, G.S. Ligand Strain and the Nature of Spin Crossover in Binuclear Complexes: Two-Step Spin Crossover in a 4,4′-Bipyridine-Bridged Iron(II) Complex [{Fe(dpia)(NCS) 2} 2 (4,4′-bpy)] (dpia=di(2-picolyl)amine; 4,4′-bpy=4,4′-bipyridine). Chem.-A Eur. J. 2009, 15, 10070–10082. [Google Scholar] [CrossRef] [PubMed]
- Matouzenko, G.S.; Jeanneau, E.; Verat, A.Y.; Bousseksou, A. Spin crossover and polymorphism in a family of 1,2-bis(4-pyridyl)ethene-bridged binuclear iron(ii) complexes. A key role of structural distortions. Dalt. Trans. 2011, 40, 9608. [Google Scholar] [CrossRef]
- Matouzenko, G.S.; Jeanneau, E.; Verat, A.Y.; de Gaetano, Y. The Nature of Spin Crossover and Coordination Core Distortion in a Family of Binuclear Iron(II) Complexes with Bipyridyl-Like Bridging Ligands. Eur. J. Inorg. Chem. 2012, 2012, 969–977. [Google Scholar] [CrossRef]
- De Gaetano, Y.; Jeanneau, E.; Verat, A.Y.; Rechignat, L.; Bousseksou, A.; Matouzenko, G.S. Ligand-Induced Distortions and Magneto-Structural Correlations in a Family of Dinuclear Spin Crossover Compounds with Bipyridyl-Like Bridging Ligands. Eur. J. Inorg. Chem. 2013, 2013, 1015–1023. [Google Scholar] [CrossRef]
- Schneider, C.J.; Cashion, J.D.; Chilton, N.F.; Etrillard, C.; Fuentealba, M.; Howard, J.A.K.; Létard, J.-F.; Milsmann, C.; Moubaraki, B.; Sparkes, H.A.; et al. Spin Crossover in a 3,5-Bis(2-pyridyl)-1,2,4-triazolate-Bridged Dinuclear Iron(II) Complex [{Fe(NCBH 3)(py)} 2 (μ-L 1) 2]-Powder versus Single Crystal Study. Eur. J. Inorg. Chem. 2013, 2013, 850–864. [Google Scholar] [CrossRef]
- Singh, S.; Brooker, S. Extension of Azine-Triazole Synthesis to Azole-Triazoles Reduces Ligand Field, Leading to Spin Crossover in Tris-L Fe(II). Inorg. Chem. 2020, 59, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Chernyshov, D.; Hostettler, M.; Törnroos, K.W.; Bürgi, H.-B. Ordering Phenomena and Phase Transitions in a Spin-Crossover Compound—Uncovering the Nature of the Intermediate Phase of[Fe(2-pic)3]Cl2⋅EtOH. Angew. Chemie Int. Ed. 2003, 42, 3825–3830. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Ooidemizu, M.; Ikuta, Y.; Osa, S.; Matsumoto, N.; Iijima, S.; Kojima, M.; Dahan, F.; Tuchagues, J.-P. Interlayer Interaction of Two-Dimensional Layered Spin Crossover Complexes [Fe II H 3 L Me][Fe II L Me]X (X− = ClO4−, BF4−, PF6−, AsF6−, and SbF6−; H3LMe = Tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine). Inorg. Chem. 2003, 42, 8406–8416. [Google Scholar] [CrossRef]
- Yamada, M.; Hagiwara, H.; Torigoe, H.; Matsumoto, N.; Kojima, M.; Dahan, F.; Tuchagues, J.P.; Re, N.; Iijima, S. A variety of spin-crossover behaviors depending on the counter anion: Two-dimensional complexes constructed by NH⋯Cl- hydrogen bonds, [FeIIH3LMe]Cl·X (X = PF6-, AsF6-, SbF6-, CF3SO3-; H3LMe = tris[2-{[(2methylimidazol-4-yl)methylidene]amino}ethyl]amine). Chem.-A Eur. J. 2006, 12, 4536–4549. [Google Scholar] [CrossRef]
- Sheu, C.-F.; Pillet, S.; Lin, Y.-C.; Chen, S.-M.; Hsu, I.-J.; Lecomte, C.; Wang, Y. Magnetostructural Relationship in the Spin-Crossover Complex t-{Fe(abpt) 2 [N(CN) 2 ] 2 }: Polymorphism and Disorder Phenomenon. Inorg. Chem. 2008, 47, 10866–10874. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wei, R.-J.; Tao, J.; Huang, R.-B.; Zheng, L.-S.; Zheng, Z. Solvent-Induced Transformation of Single Crystals of a Spin-Crossover (SCO) Compound to Single Crystals with Two Distinct SCO Centers. J. Am. Chem. Soc. 2010, 132, 1558–1566. [Google Scholar] [CrossRef]
- Luan, J.; Zhou, J.; Liu, Z.; Zhu, B.; Wang, H.; Bao, X.; Liu, W.; Tong, M.L.; Peng, G.; Peng, H.; et al. Polymorphism-dependent spin-crossover: Hysteretic two-step spin transition with an ordered [HS-HS-LS] intermediate phase. Inorg. Chem. 2015, 54, 5145–5147. [Google Scholar] [CrossRef]
Selected Parameters a b | C1·Solvents (@173 K) | C2·THF (@173 K) | C3·THF (@100 K) | C3·THF (@200 K) |
---|---|---|---|---|
Fe-NTDA(L1) | 2.157(2) | 2.150(2) | LS 1.967(8)/ HS 2.147(8) | 2.154(2) |
Fe-NTDA(L2) | 2.161(2) | 2.174(2) | LS 1.971(7)/ HS 2.170(8) | 2.158(2) |
Fe-NNH(L1) | 2.298(2) | 2.296(2) | LS 2.055(8)/ HS 2.239(7) | 2.255(2) |
Fe-NNH(L2) | 2.304(2) | 2.297(2) | LS 2.103(8)/ HS 2.290(8) | 2.301(2) |
Fe-NImz(L1) | 2.106(2) | 2.114(2) | LS 1.995(8)/ HS 2.131(7) | 2.132(2) |
Fe-NImz(L2) | 2.104(2) | 2.120(2) | LS 1.958(8)/ HS 2.124(7) | 2.122(2) |
av. Fe-N | 2.188 | 2.192 | LS 2.008/ HS 2.184 | 2.187 |
av. cis N-Fe-N | 90.2 | 90-2 | LS 90.0/ HS 90.2 | 90.2 |
av. trans N-Fe-N | 169.5 | 169.5 | LS 172.9/ HS 168.1 | 168.2 |
∑ c | 108.0 | 105.3 | LS 69.5 HS 115.6 | 116.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürmeyer, F.; Carrella, L.M.; Rentschler, E. 2D Layer Arrangement of Solely [HS-HS] or [LS-LS] Molecules in the [HS-LS] State of a Dinuclear Fe(II) Spin Crossover Complex. Crystals 2020, 10, 448. https://doi.org/10.3390/cryst10060448
Fürmeyer F, Carrella LM, Rentschler E. 2D Layer Arrangement of Solely [HS-HS] or [LS-LS] Molecules in the [HS-LS] State of a Dinuclear Fe(II) Spin Crossover Complex. Crystals. 2020; 10(6):448. https://doi.org/10.3390/cryst10060448
Chicago/Turabian StyleFürmeyer, Fabian, Luca M. Carrella, and Eva Rentschler. 2020. "2D Layer Arrangement of Solely [HS-HS] or [LS-LS] Molecules in the [HS-LS] State of a Dinuclear Fe(II) Spin Crossover Complex" Crystals 10, no. 6: 448. https://doi.org/10.3390/cryst10060448
APA StyleFürmeyer, F., Carrella, L. M., & Rentschler, E. (2020). 2D Layer Arrangement of Solely [HS-HS] or [LS-LS] Molecules in the [HS-LS] State of a Dinuclear Fe(II) Spin Crossover Complex. Crystals, 10(6), 448. https://doi.org/10.3390/cryst10060448