Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.3. Methods
3.4. Catalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dusselier, M.; Davis, M.E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118, 5265–5329. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Corma, A. Inorganic molecular sieves: Preparation, Modification and Industrial Application in Catalytic Processes. Coord. Chem. Rev. 2011, 255, 1558–1580. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Meng, X.; Gao, X.; Xiao, F.-S. Solvent-free Synthesis of Zeolites: Mechanism and Utility. Acc. Chem. Res. 2018, 51, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Sun, Q.; Bai, R.; Li, X.; Guo, G.; Yu, J. In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. J. Am. Chem. Soc. 2016, 138, 7484–7487. [Google Scholar] [CrossRef]
- Brandenberger, S.; Krocher, O.; Tissler, A.; Althoff, R. The State of the Art in Selective Catalytic Reduction of NOx by Ammonia using Metal-Exchanged Zeolite Catalysts. Catal. Rev. 2008, 50, 492–531. [Google Scholar] [CrossRef]
- Ouyang, X.; Hwang, S.; Xie, D.; Rea, T.; Zones, S.I.; Katz, A. Heteroatom-Substituted Delaminated Zeolites as Solid Lewis Acid Catalysts. ACS Catal. 2015, 5, 3108–3119. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C.; Meng, X.; Yang, H.; Mesters, C.; et al. Hydrophobic Zeolite Modification for in Situ Peroxide Formation in Methane Oxidation to Methanol. Science 2020, 367, 193–197. [Google Scholar]
- Jones, A.; Carr, R.; Zones, S.I.; Iglesia, E. Acid Strength and Solvation in Catalysis by MFI Zeolites and Effects of the Identity, Concentration and Location of Framework Heteroatoms. J. Catal. 2014, 312, 58–68. [Google Scholar] [CrossRef]
- Shamzhy, M.; Opanasenko, M.; Concepcion, P.; Martínez, A. New Trends in Tailoring Active Sites in Zeolite-Based Catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. [Google Scholar] [CrossRef]
- Ryu, T.; Hong, S. Iron-exchanged UZM-35: An Active NH3-SCR Catalyst at Low Temperatures. Appl. Catal. B Environ. 2020, 266, 118622. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, H.; Jiang, J.; Guan, Y.; Wu, P. Sn-Beta Zeolite Hydrothermally Synthesized via Interzeolite Transformation as Efficient Lewis Acid Catalyst. J. Catal. 2017, 352, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Qin, G.; Wang, L.; Zuidema, E.; Yang, Q.; Dang, S.; Yang, C.; Xiao, J.; Meng, X.; et al. Direct Conversion of Syngas to Ethanol within Zeolite Crystals. Chem 2020, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Marler, B.; Gies, H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: A review. Eur. J. Mineral. 2012, 24, 405–428. [Google Scholar] [CrossRef]
- Camblor, M.A.; Corell, C.; Corma, A.; Diaz-Cabanas, M.-J.; Nicolopoulos, S.; Gonzalez-Calbet, J.M.; Vallet-Regi, M. A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chem. Mater. 1996, 8, 2415–2417. [Google Scholar] [CrossRef]
- Roth, W.; Nachtigall, P.; Morris, R.; Cejka, J. Two-Dimensional Zeolites: Current Status and Perspectives. Chem. Rev. 2014, 114, 4807–4837. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Yokoi, T.; Kubota, Y.; Tatsumi, T. Unique Adsorption Properties of Organic-Inorganic Hybrid Zeolite IEZ-1 with Dimethylsilylene Moieties. Chem. Commun. 2007, 5188–5190. [Google Scholar] [CrossRef]
- Wu, P.; Ruan, J.; Wang, L.; Wu, L.; Wang, Y.; Liu, Y.; Fan, W.; He, M.; Terasaki, O.; Tatsumi, T. Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. J. Am. Chem. Soc. 2008, 130, 8178–8187. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, W.; Ren, P.; Han, X.; Muller, U.; Yilmaz, B.; Feyen, M.; Gies, H.; Xiao, F.-S.; De Vos, D.; et al. Insights into the Topotatic Conversion Process from Layered Silicate RUB-36 to FER-type Zeolite by Layer Reassembly. Chem. Mater. 2013, 25, 840–847. [Google Scholar] [CrossRef]
- Gies, H.; Muller, U.; Yilmaz, B.; Tatsumi, T.; Xie, B.; Xiao, F.-S.; Bao, X.; Zhang, W.; De Vos, D. Interlayer Expansion of the Layered Zeolite Precursor RUB-39: A Universal Method To Synthesize Functionalized Microporous Silicates. Chem. Mater. 2011, 23, 2545–2554. [Google Scholar] [CrossRef]
- Wu, P.; Nuntasri, D.; Ruan, J.; Liu, Y.; He, M.; Fan, W.; Terasaki, O.; Tatsumi, T. Delamination of Ti-MWW and High Efficiency in Epoxidation of Alkenes with Various Molecular Sizes. J. Phys. Chem. B 2004, 108, 19126–19131. [Google Scholar] [CrossRef]
- Gies, H.; Muller, U.; Yilmaz, B.; Feyen, M.; Tatsumi, T.; Imai, H.; Zhang, H.; Xie, B.; Xiao, F.-S.; Bao, X.; et al. Interlayer Expansion of the Hydrous Layer Silicate RUB-36 to a Functionalized, Microporous Framework Silicate: Crystal Structure Analysis and Physical and Chemical Characterization. Chem. Mater. 2012, 24, 1536–1545. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; Feyen, M.; Vanbergen, T.; Muller, U.; Yilmaz, B.; Xiao, F.-S.; Zhang, W.; Yokoi, T.; Bao, X.; De Vos, D.; et al. From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chem. Mater. 2015, 27, 316–326. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Xie, B.; Zhang, H.; Wang, L.; Meng, X.; Zhang, W.; Bao, X.; Yilmaz, B.; Muller, U.; Gies, H.; et al. Interlayer-Expanded Microporous Titanosilicate Catalysts with Functionalized Hydroxyl Groups. ChemCatChem 2011, 3, 1442–1446. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; Gies, H.; Yilmaz, B.; Muller, U.; Feyen, M.; Xiao, F.-S.; Zhang, W.; Yokoi, T.; Bao, X.; De Vos, D. A New Class of Solid Lewis Acid Catalysts Based on Interlayer Expansion of Layered Silicates of the RUB-36 type with Heteroatoms. J. Mater. Chem. A 2014, 2, 9709–9717. [Google Scholar] [CrossRef]
- Gies, H.; Feyen, M.; De Baerdemaker, T.; De Vos, D.; Yilmaz, B.; Muller, U.; Meng, X.; Xiao, F.S.; Zhang, W.; Yokoi, T.; et al. Interlayer Expansion Using Metal-Linker Units: Crystalline Microporous Silicate Zeolites with Metal Centers on Specific Framework Sites. Microporous Mesoporous Mater. 2016, 222, 235–240. [Google Scholar] [CrossRef]
- Bian, C.; Wu, Q.; Zhang, J.; Pan, S.; Wang, L.; Meng, X.; Xiao, F.-S. Interlayer Expansion of the Layered Zeolite Precursor COK-5 with Sn(acac)2Cl2. J. Eng. Chem. 2015, 24, 642–645. [Google Scholar]
- Wang, L.; Zhang, J.; Wang, X.; Zhang, B.; Ji, W.; Meng, X.; Li, J.; Su, D.; Bao, X.; Xiao, F.-S. Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. J. Mater. Chem. A 2014, 2, 3725–3729. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Bui, L.; Gunther, W.; Min, E.; Roman-Leshkov, Y. Synthesis and Catalytic Activity of Sn-MFI Nanosheets for the Baeyer-Villiger Oxidation of Cyclic Ketones. ACS Catal. 2012, 2, 2695–2699. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Wu, G.; Guan, N.; Li, L.; Hunger, M. Improved Post-Synthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides. ACS Catal. 2014, 4, 2801–2810. [Google Scholar] [CrossRef]
- Yong, G.; Zhang, Y.; Ying, J. Efficient Catalytic System for the Selective Production of 5-Hydroxymethylfurfural from Glucose and Fructose. Angew. Chem. Int. Ed. 2008, 47, 9345–9348. [Google Scholar] [CrossRef]
- Pagan-Torres, Y.; Wang, T.; Gallo, J.; Shanks, B.; Dumesic, J. Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent. ACS Catal. 2012, 2, 930–934. [Google Scholar] [CrossRef]
- Stahlberg, T.; Grau Sorensen, M.; Riisager, A. Direct conversion of glucose to 5-(hydroxymethyl) furfural in ionic liquids with lanthanide catalysts. Green Chem. 2010, 12, 321–325. [Google Scholar] [CrossRef]
- Rami, N.; Amin, N. Catalytic Conversion of Carbohydrate Biomass in Ionic Liquid to 5-(Hydroxymethyl) Furfural and Levulinic Acid: A Review. BioEnergy Res. 2020. [Google Scholar] [CrossRef]
- Stahlberg, T.; Rodriguez-Rodriguez, S.; Fristrup, P.; Riisager, A. Metal-free Dehydration of Glucose to 5-(Hydroxymethyl) Furfural in Ionic Liquids with Boric Acid as a Promoter. Chem. Eur. J. 2011, 17, 1369. [Google Scholar] [CrossRef]
- Hou, Q.; Zhen, M.; Li, W.; Liu, L.; Liu, J.; Zhang, S.; Nie, Y.; Bai, X.; Ju, M. Efficient Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Aluminum Oxide in Ionic Liquid. Appl. Catal. B Environ. 2019, 253, 1–10. [Google Scholar] [CrossRef]
- Hou, Q.; Zhen, M.L.; Chen, Y.; Huang, F.; Zhang, S.; Li, W.; Ju, M. Tin Phosphate as a Heterogeneous Catalyst for Efficient Dehydration of Glucose into 5-Hydroxymethylfurfural in Ionic Liquid. Appl. Catal. B Environ. 2018, 224, 183–193. [Google Scholar] [CrossRef]
- Wang, L.; Sang, S.; Meng, S.; Zhang, Y.; Qi, Y.; Liu, Z. Direct Synthesis of Zn-ZSM-5 with Novel Morphology. Mater. Lett. 2007, 61, 1675–1678. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Hu, J.; Li, T.; Li, G. The Preparation of Nano-Sized H [Zn, Al] ZSM-5 Zeolite and Its Application in the Aromatization of Methanol. Microporous Mesoporous Mater. 2011, 143, 435–442. [Google Scholar] [CrossRef]
- Xavier, K.; Chacko, J.; Mohammed Yusuff, K. Zeolite-Encapsulated Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) Complexes as Catalysts for Partial Oxidation of Benzyl Alcohol and Ethylbezene. Appl. Catal. A Gen. 2004, 258, 251–259. [Google Scholar] [CrossRef]
- Janas, J.; Shishido, T.; Che, M.; Dzwigaj, S. Role of Tetrahedral Co(Ⅱ) sites of CoSiBEA Zeolite in the Selective Catalytic Reduction of NO: XRD, UV-Vis, XAS and Catalysis Study. Appl. Catal. B Environ. 2009, 89, 196–203. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2g−1) | Micropore Volume (cm3g−1) | Si/Sn |
---|---|---|---|
RUB-37 | 288 | 0.12 | ∞ |
Sn-JHP-2 | 362 | 0.17 | 160 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Wang, X.; Yu, L.; Zhang, F.; Zhang, J.; Fei, Z.; Qiu, J.; Zhu, L. Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion. Crystals 2020, 10, 530. https://doi.org/10.3390/cryst10060530
Bian C, Wang X, Yu L, Zhang F, Zhang J, Fei Z, Qiu J, Zhu L. Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion. Crystals. 2020; 10(6):530. https://doi.org/10.3390/cryst10060530
Chicago/Turabian StyleBian, Chaoqun, Xiao Wang, Lan Yu, Fen Zhang, Jie Zhang, Zhengxin Fei, Jianping Qiu, and Longfeng Zhu. 2020. "Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion" Crystals 10, no. 6: 530. https://doi.org/10.3390/cryst10060530
APA StyleBian, C., Wang, X., Yu, L., Zhang, F., Zhang, J., Fei, Z., Qiu, J., & Zhu, L. (2020). Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion. Crystals, 10(6), 530. https://doi.org/10.3390/cryst10060530