Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Modification of the Mo Thin Film Surface
3.2. Laser-Induced Mo Oxide Phases
3.3. Morphological Features of the Laser-Modified Surface
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wautelet, M. Solid Surfaces Under Laser Irradiation. Surf. Sci. 1980, 95, 299–308. [Google Scholar] [CrossRef]
- Bauerle, D. Chemical Processing with Lasers: Recent developments. Appl. Phys. B 1988, 46, 261–270. [Google Scholar] [CrossRef]
- Wautelet, M. Laser-Assisted Reaction of Metals with Oxygen. Appl. Phys. A 1990, 50, 131–139. [Google Scholar] [CrossRef]
- Kumari, L.; Lin, J.-H.; Ma, Y.-R. Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films. J. Phys. D Appl. Phys. 2008, 41, 1–7. [Google Scholar] [CrossRef]
- Zepeda, M.A.; Picquart, M.; Haro-Poniatowski, E. Laser induced oxidation effects in bismuth thin films. Mater. Res. Soc. Symp. Proc. 2012, 1477, 1–6. [Google Scholar] [CrossRef]
- Steele, J.A.; Lewis, R.A. In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands. Opt. Mater. Express 2014, 4, 2133–2142. [Google Scholar] [CrossRef]
- Díaz-Guerra, C.; Almodóvar, P.; Camacho-Lopez, M.; Camacho-López, S.; Piqueras, J. Formation of β-Bi2O3 and δ-Bi2O3 during laser irradiation of Bi films studied in-situ by spatially resolved Raman spectroscopy. J. Alloys Compounds. 2017, 723, 520–526. [Google Scholar] [CrossRef]
- Ogale, S.B.; Polman, A.; Quentin, F.O.P.; Roorda, S.; Saris, F.W. Pulsed laser oxidation and nitridation of metal surfaces immersed in liquid media. Appl. Phys. Lett. 1987, 50, 138–140. [Google Scholar] [CrossRef]
- Pérez del Pino, A.; Serra, P.; Morenza, J.L. Coloring of titanium by pulsed laser processing in air. Thin Solid Films 2002, 415, 201–205. [Google Scholar] [CrossRef]
- Pérez del Pino, A.; Fernández-Pradas, J.M.; Serra, P.; Morenza, J.L. Coloring of titanium through laser oxidation: Comparative study with anodizing. Surf. Coat. Technol. 2004, 187, 106–112. [Google Scholar] [CrossRef]
- Camacho-López, S.; Evans, R.; Escobar-Alarcón, L.; Camacho-López, M.A.; Camacho-López, M. Polarization-dependent single-beam laser-induced grating-like effects on titanium films. Appl. Surf. Sci. 2008, 255, 3028–3032. [Google Scholar] [CrossRef]
- Shupyk, I.; Lavisse, L.; Jouvard, J.-M.; Marco de Lucas, M.C.; Bourgeois, S.; Herbst, F.; Piquemal, J.-Y.; Bozon-Verduraz, F.; Pilloz, M. Study of surface layers and ejected powder formed by oxidation of titanium substrates with a pulsed Nd:YAG laser beam. Appl. Surf. Sci. 2009, 255, 5574–5578. [Google Scholar] [CrossRef]
- Cano-Lara, M.; Camacho-López, S.; Esparza-García, A.; Camacho-López, M.A. Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses. Opt. Mater. 2011, 33, 1648–1653. [Google Scholar] [CrossRef]
- Baranov, A.V.; Bogdanov, K.V.; Fedorov, A.V.; Yarchuk, M.V.; Ivanov, A.I.; Veiko, V.P.; Berwick, K. Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films. J. Raman Spectrosc. 2011, 42, 1780–1783. [Google Scholar] [CrossRef]
- Landis, E.C.; Phillips, K.C.; Mazur, E.; Friend, C.M. Formation of nanostructured TiO2 by femtosecond laser irradiation of titanium in O2. J. Appl. Phys. 2012, 112, 1–5. [Google Scholar] [CrossRef]
- Camacho-Lopez, S.; Camacho-Lopez, M.; Olea-Mejia, O.; Evans, R.; Castillo-Vega, G.; Camacho-Lopez, M.A.; Herrera-Zaldivar, M.A.; Esparza-García, A.; Banuelos Muñeton, J.G. Processing of metallic thin films using Nd:YAG laser pulses. In Nd YAG Laser; InTech: London, UK, 2012; pp. 23–40. [Google Scholar]
- Kotsedi, L.; Mthunzi, P.; Nuru, Z.Y.; Eaton, S.M.; Sechoghela, P.; Mongwaketsi, N.; Ramponi, R.; Maaza, M. Femtosecond laser structuring of molybdenum thin films. Appl. Surf. Sci. 2015, 353, 1334–1341. [Google Scholar] [CrossRef]
- Venegas-Castro, A.; Reyes-Contreras, A.; Camacho-López, M.; Olea-Mejía, O.; Camacho-López, S.; Esparza-García, A. Study of the integrated fluence threshold condition for the formation of β-Bi2O3 on Bi thin films by using ns laser pulses. Opt. Laser Technol. 2016, 81, 50–54. [Google Scholar] [CrossRef]
- He, S.; Amoruso, S.; Pang, D.; Wang, C.; Hu, M. Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser. J. Chem. Phys. 2016, 144, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kotsedi, L.; Kaviyarasu, K.; Fuku, X.G.; Eaton, S.M.; Amara, E.H.; Bireche, F.; Ramponi, R.; Maaza, M. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study. Appl. Surf. Sci. 2017, 421, 213–219. [Google Scholar] [CrossRef]
- Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films. Appl. Surf. Sci. 2018, 439, 681–688. [Google Scholar] [CrossRef]
- Cuando-Espitia, N.; Redenius, J.; Mensink, K.; Camacho-López, M.; Camacho-López, S.; Aguilar, G. Influence of oxygen pressure on the fs laser-induced oxidation of molybdenum thin films. Opt. Mater. Express 2018, 8, 581–596. [Google Scholar] [CrossRef]
- Camacho-Lopez, S.; Perez-Lopez, I.O.; Cano-Lara, M.; Esparza-Garcia, A.; Maya-Sanchez, M.C.; Reynoso-Hernandez, J.A.; Camacho-Lopez, M. Laser Fluence Dependence of the Electrical Properties of MoO2 Formed by High Repetition Femtosecond Laser Pulses. Phys. Status Solidi A 2018, 215, 1800226. [Google Scholar] [CrossRef]
- Dostovalov, A.V.; Korolkov, V.P.; Okotrub, K.A.; Bronnikov, K.A.; Babin, S.A. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt. Express 2018, 26, 7712–7723. [Google Scholar] [CrossRef]
- Florian, C.; Déziel, J.-L.; Kirner, S.V.; Siegel, J.; Bonse, J. The Role of the Laser-Induced Oxide Layer in the Formation of Laser-Induced Periodic Surface Structures. Nanomaterials 2020, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Florian, C.; Wonneberger, R.; Undisz, A.; Kirner, S.V.; Wasmuth, K.; Spaltmann, D.; Krüger, J.; Bonse, J. Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy. Appl. Phys. A 2020, 126, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Contreras, A.; Camacho-López, M.; Camacho-López, S.; Olea-Mejía, O.; Esparza-García, A. Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold. Opt. Mater. Express 2017, 7, 1777–1786. [Google Scholar] [CrossRef]
- Santillan, R.; Wong, A.; Segovia, P.; Camacho-López, M.; Camacho-López, S. Femtosecond laser-induced periodic surface structures formation on bismuth thin films upon irradiation in ambient air. Opt. Mater. Express 2020, 10, 674–681. [Google Scholar] [CrossRef]
- Sanz, M.; Rebollar, E.; Ganeev, R.A.; Castillejo, M. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors. Appl. Surf. Sci. 2013, 278, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.; Waugh, D.G.; Lawrence, J.; Vilar, R. Laser surface structuring of ceramics, metals and polymers for biomedical applications: A review. In Laser Surface Modification of Biomaterials: Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 281–299. [Google Scholar]
- Castillo-Vega, G.R.; Penilla, E.H.; Camacho-López, S.; Aguilar, G.; Garay, J.E. Waveguide-like structures written in transparent polycrystalline ceramics with an ultra-low fluence femtosecond laser. Opt. Mater. Express 2012, 2, 1416–1424. [Google Scholar] [CrossRef]
- Rodríguez-Beltrán, R.I.; Paszkiewicz, S.; Szymczyk, A.; Rosłaniec, Z.; Nogales, A.; Ezquerra, T.A.; Castillejo, M.; Moreno, P.; Rebollar, E. Laser-induced periodic surface structures on polymer nanocomposites with carbon nano additives. Appl. Phys. A 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Prada-Rodrigo, J.; Rodríguez-Beltrán, R.I.; Paszkiewicz, S.; Szymczyk, A.; Ezquerra, T.A.; Moreno, P.; Rebollar, E. Laser-Induced Periodic Surface Structuring of Poly(trimethylene terephthalate) Films Containing Tungsten Disulfide Nanotubes. Polymers 2020, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Chippindale, A.M.; Cheetham, A.K. The Oxide Chemistry of Molybdenum. In Molybdenum: An Outline of Chemistry and Uses; Elsevier: Amsterdam, The Netherlands, 1994; Volume 19, pp. 146–184. [Google Scholar]
- Alves de Castro, I.; Datta, R.; Ou, J.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-Zadeh, K. Molybdenum oxides—From fundamentals to functionality. Adv. Mater. 2017, 29, 1–31. [Google Scholar]
- Spevack, P.A.; McIntyre, N.S. Thermal reduction of molybdenum trioxide. J. Phys. Chem. 1992, 96, 9029–9035. [Google Scholar] [CrossRef]
- Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J.C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim Acta 1995, 51, 1323–1344. [Google Scholar] [CrossRef]
- Dieterle, M. In Situ Resonance Raman Studies of Molybdenum Oxide Based Selective Oxidation Catalysts. Ph.D. Tesis, Technischen Universität, Berlin, Germany, 2001. [Google Scholar]
- Blume, A. Synthese und strukturelle Untersuchungen von Molybdän-, Vanadium- und Wolframoxiden als Referenzverbindungen für die heterogene Katalyse. Ph.D. Tesis, Technischen Universität, Berlin, Germany, 2004. [Google Scholar]
- Dieterle, M.; Weinberg, G.; Mestl, G. Raman spectroscopy of molybdenum oxides, Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812–821. [Google Scholar] [CrossRef]
- Dieterle, M.; Mestl, G. Raman spectroscopy of molybdenum oxides, Part II. Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2. Phys. Chem. Chem. Phys. 2002, 4, 822–826. [Google Scholar] [CrossRef]
- Camacho-López, M.; Escobar-Alarcón, L.; Picquart, M.; Arroyo, R.G.; Córdoba, G.; Haro-Poniatowski, E. Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Opt. Mater. 2011, 33, 480–484. [Google Scholar] [CrossRef]
- Mc. Carron III, E. β-MoO3: A metastable analogue of WO3. J. Chem. Soc. Chem. Commun. 1986, 4, 336–338. [Google Scholar] [CrossRef]
- Lunk, H.-J.; Hartl, H.; Hartl, M.A.; Fait, M.J.G.; Ilya, G.; Shenderovich, I.G.; Feist, M.; Frisk, T.A.; Daemen, L.L.; Mauder, D.; et al. Hexagonal Molybdenum Trioxide—Known for 100 Years and Still a Fount of New Discoveries. Inorg. Chem. 2010, 49, 9400–9408. [Google Scholar]
- Rahmani, M.B.; Keshmiri, S.H.; Yu, J.; Sadek, A.Z.; Al-Mashat, L.; Moafi, A.; Latham, K.; Li, Y.X.; Wlodarski, W.; Kalantar-Zadeh, K. Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators B 2010, 145, 13–19. [Google Scholar] [CrossRef]
- Lakshmi-Narayana, A.; Hussain, O.M.; Ramana, C.V.; Camacho-Lopez, M.; Abdel-Ghany, A.; Hashem, A.; Mauger, A.; Julien, C.M. Molybdenum-Suboxide Thin Films as Anode Layers in Planar Lithium Microbatteries. Electrochem 2020, 2, 12. [Google Scholar] [CrossRef]
- Chithambararaj, A.; Sanjini, N.S.; Velmathi, S.; Bose, A.C. Preparation of h-MoO3 and α-MoO3 nanocrystals: Comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 2013, 15, 14761–14769. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, J.; Kishore, P.S.; Viswanathan, B.; Varadarajan, T.K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochemistry Communications 2009, 11, 572–575. [Google Scholar] [CrossRef]
- Haro-Poniatowski, E.; Julien, C.; Pecquenard, B.; Livage, J.; Camacho-López, M.A. Laser-induced structural transformations in MoO3 investigated by Raman spectroscopy. J. Mater. Res. 1998, 13, 1033–1037. [Google Scholar] [CrossRef]
- Almodóvar, P.; Díaz-Guerra, C.; Ramírez-Castellanos, J.; González-Calbet, J.M. In situ local assessment of laser irradiation-induced phase transformations in hexagonal MoO3 microrods. Cryst. Eng.Comm. 2018, 20, 4954–4961. [Google Scholar]
- Du, D.; Liu, X.; Korn, G.; Squier, J.; Mourou, G. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 1994, 64, 3071–3073. [Google Scholar] [CrossRef] [Green Version]
- Stuart, B.; Feit, M.; Rubenchik, A.; Shore, B.; Perry, M. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 1995, 74, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Hermann, J.; Coustillier, G.; Bruneau, S.; Axente, E.; Guillemoles, J.F.; Sentis, M.; Alloncle, P.; Itina, T. Selective ablation of thin films with short and ultrashort laser pulses. Appl. Surf. Sci. 2006, 252, 4814–4818. [Google Scholar] [CrossRef]
- Navas, I.; Vinodkumar, R.; Lethy, K.; Detty, A.; Ganesan, V.; Sathe, V.; Mahadevan, P. Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing. J. Phys. D Appl. Phys. 2009, 42, 2–9. [Google Scholar] [CrossRef]
Starting Material | Pulse Duration | Obtained Material | Research Group | Year |
---|---|---|---|---|
Titanium | ns | TiO | Ogale et al. | 1986 [8] |
Titanium | ns | 1 a-Ti2O3 | Pérez del Pino et al. | 2002 [9,10] |
Ti2O3 | ||||
1 R-TiO2 | ||||
Titanium thin films | ns | 1 R-TiO2 | Camacho-López et al. | 2008 [11] |
Titanium | ns | 1 A-TiO2, R-TiO2 | Shupyk et al. | 2009 [12] |
Molybdenum thin films | fs | MoO2, Mo4O11 | Cano Lara et al. | 2011 [13] |
Chromium thin films | fs | CrO2, Cr2O3 | Baranov et al. | 2011 [14] |
Titanium plates | fs | 1 a-TiO2 | Landis et al. | 2012 [15] |
Molybdenum thin films | ns, ps | MoO2 | Camacho-López et al. | 2012 [16] |
Molybdenum films | fs | MoO2 | Kotsedi et al. | 2015 [17] |
Bismuth thin films | ns | β-Bi2O3 | Venegas-Castro et al. | 2016 [18] |
Copper thin films | fs | Cu2O, CuO | He et al. | 2016 [19] |
Molybdenum films | fs | MoO2 | Kotsedi et al. | 2017 [20] |
Zinc thin films | fs | ZnO | Esqueda-Barron et al. | 2018 [21] |
Molybdenum thin films | fs | MoO2, MoO3, Mo8O23 | Cuando-Espitia et al. | 2018 [22] |
Molybdenum thin films | fs | MoO2, Mo4O11 | Camacho-López et al. | 2018 [23] |
Chromium films | fs | CrO2, Cr2O3 | Dostovalov et al. | 2018 [24] |
CrN layer | fs | CrO2, Cr2O3 | Florian et al. | 2020 [25] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Lopez, S.; Cano-Lara, M.; Camacho-Lopez, M. Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses. Crystals 2020, 10, 629. https://doi.org/10.3390/cryst10070629
Camacho-Lopez S, Cano-Lara M, Camacho-Lopez M. Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses. Crystals. 2020; 10(7):629. https://doi.org/10.3390/cryst10070629
Chicago/Turabian StyleCamacho-Lopez, Santiago, Miroslava Cano-Lara, and Marco Camacho-Lopez. 2020. "Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses" Crystals 10, no. 7: 629. https://doi.org/10.3390/cryst10070629