High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples
Abstract
:1. Introduction
2. Materials and Methods
Experimental Procedure
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Mechanical Characterization
3.2.1. Microhardness
3.2.2. Tensile Behavior
3.2.3. Fractography
3.2.4. Effect of Precipitation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Thivillon, L.; Bertrand, P.; Laget, B.; Smurov, I. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components. J. Nucl. Mater. 2009, 385, 236–241. [Google Scholar] [CrossRef]
- Knezović, N.; Topić, A. Wire and Arc Additive Manufacturing (WAAM)—A New Advance in Manufacturing. In Lecture Notes in Networks and Systems; Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 42, pp. 65–71. [Google Scholar]
- Manikandan, S.G.; Sivakumar, D.; Kamaraj, M.; Rao, K.P. Laves phase control in Inconel 718 weldments. Mater. Sci. Forum 2012, 710, 614–619. [Google Scholar] [CrossRef]
- Antonsson, T.; Fredriksson, H. The effect of cooling rate on the solidification of INCONEL 718. Metall. Mater. Trans. B 2005, 36, 85–96. [Google Scholar] [CrossRef]
- Fronius International GmbH, “Arctig Stainless Steel PIPE 10 mm”. 2019. Available online: https://www.fronius.com/en/welding-technology/info-centre/magazine/2018/well-cooled-at-maximum-power (accessed on 9 May 2018).
- Ling, L.; Han, Y.; Zhou, W.; Gao, H.; Shu, D.; Wang, J.; Kang, M.; Sun, B. Study of Microsegregation and Laves Phase in INCONEL718 Superalloy Regarding Cooling Rate During Solidification. Metall. Mater. Trans. A 2015, 46, 354–361. [Google Scholar] [CrossRef]
- Clark, D.; Bache, M.R.; Whittaker, M.T. Shaped metal deposition of a nickel alloy for aero engine applications. J. Mater. Process. Technol. 2008, 203, 439–448. [Google Scholar] [CrossRef]
- Clark, D.; Bache, M.R.; Whittaker, M.T. Erratum: Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-inert-gas-shaped metal deposition. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2010, 41, 1346–1353. [Google Scholar] [CrossRef]
- Baufeld, B. Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD). J. Mater. Eng. Perform. 2012, 21, 1416–1421. [Google Scholar] [CrossRef]
- Asala, G.; Khan, A.K.; Andersson, J.; Ojo, O.A. Microstructural Analyses of ATI 718Plus® Produced by Wire-ARC Additive Manufacturing Process. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 4211–4228. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.A.; Duarte, V.; Miranda, R.M.; Santos, T.G.; Oliveira, J.P. Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials 2019, 12, 1121. [Google Scholar] [CrossRef] [Green Version]
- Derekar, K.S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Artaza, T.; Bhujangrao, T.; Suárez, A.; Veiga, F.; Lamikiz, A. Influence of heat input on the formation of laves phases and hot cracking in plasma arc welding (PAW) additive manufacturing of inconel 718. Metals 2020, 10, 771. [Google Scholar] [CrossRef]
- Xu, X.; Ding, J.; Ganguly, S.; Williams, S. Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J. Mater. Process. Technol. 2019, 265, 201–209. [Google Scholar] [CrossRef]
- Veiga, F.; del Val, A.G.; Suárez, A.; Alonso, U. Analysis of the machining process of titanium Ti6Al-4V parts manufactured by wire arc additive manufacturing (WAAM). Materials 2020, 13, 766. [Google Scholar] [CrossRef] [Green Version]
- Alonso, U.; Veiga, F.; Suárez, A.; Artaza, T. Experimental investigation of the influence of wire arc additive manufacturing on the machinability of titanium parts. Metals 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Belan, J. High frequency fatigue test of in 718 alloy—microstructure and fractography evaluation. Metalurgija 2015, 54, 59–62. [Google Scholar]
- Gierth, M.; Henckell, P.; Ali, Y.; Scholl, J.; Bergmann, J.P. Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW). Materials 2020, 13, 2671. [Google Scholar] [CrossRef]
- Li, R.B.; Yao, M.; Liu, W.C.; He, X.C. Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy. Scr. Mater. 2002, 46, 635–638. [Google Scholar] [CrossRef]
- Azarbarmas, M.; Aghaie-Khafri, M.; Cabrera, J.M.; Calvo, J. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718. Mater. Sci. Eng. A 2016, 678, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, J.; Ou, H.; Lu, B.; Cui, Z.; Long, H. Flow characteristics and intrinsic workability of IN718 superalloy. Mater. Sci. Eng. A 2015, 642, 279–287. [Google Scholar] [CrossRef]
- Momeni, A.; Abbasi, S.M.; Morakabati, M.; Badri, H. A Comparative Study on the Hot Working Behavior of Inconel 718 and ALLVAC 718 Plus. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 1216–1229. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718. Mater. Sci. Eng. A 2008, 486, 321–332. [Google Scholar] [CrossRef]
- Jambor, M.; Bokůvka, O.; Nový, F.; Trško, L.; Belan, J. Phase transformations in nickel base superalloy INCONEL 718 during cyclic loading at high temperature. Prod. Eng. Arch. 2017, 15, 15–18. [Google Scholar] [CrossRef]
- Schirra, J.J.; Caless, R.H.; Hatala, R.W. The Effect of Laves Phase on the Mechanical Properties of Wrought and Cast + HIP Inconel. Superalloys 2012, 718, 375–388. [Google Scholar] [CrossRef]
- Campo, E.; Turco, C.; Fiat, G.R. The correlation between heat treatment, structure and mechanical characteristics in Inconel 718. Metall. Sci. Tecnol. 2013, 3, 5. [Google Scholar]
- James, B.Y.L.A. Fatigue-Crack Growth in Inconel 718 Weldments at Elevated Temperatures. Weld. J. Res. Suppl. 1978, 57, 17s–23s. [Google Scholar]
- Bouse, G.K.; Dunham, R.A.; Lane, J. Mechnical Properties of Fine-Grain Microcast-X Alloy 718 investment Casting for SSME, Gas Turbine Engine, and Airframe Components. Miner. Met. Mater. Soc.-Superalloys 1997, 301, 5559. [Google Scholar]
- Azadian, S. Aspects of Precipitation in the Alloy Inconel 718; Luleå University of Technology: Luleå, Sweden, 2004. [Google Scholar]
- De Jaeger, J.; Solas, D.; Fandeur, O.; Schmitt, J.H.; Rey, C. 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718. Mater. Sci. Eng. A 2015, 646, 33–44. [Google Scholar] [CrossRef]
- Wang, H.; Ikeuchi, K.; Takahashi, M.; Ikeda, A. Microstructures of Inconel 718 alloy subjected to rapid thermal and stress cycle - joint performance and its controlling factors in friction welding of Inconel 718 alloy. Weld. Int. 2009, 23, 662–669. [Google Scholar] [CrossRef]
- Ram, G.D.J.; Reddy, A.V.; Rao, K.P. Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing. J. Mater. Sci. 2005, 40, 1497–1500. [Google Scholar] [CrossRef]
- Madhusudhan, G.; Srinivasa, C.; Srinivas, K. Improvement of mechanical properties of Inconel 718 electron beam welds-influence of welding techniques and post weld heat treatment. Int. J. Adv. Manuf. Technol. 2009, 43, 671–680. [Google Scholar] [CrossRef]
Alloy/Wt.% | Ni | Cr | Nb+Ta | Mo | Ti | Al | Co | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|
WAAM-IN718 | 52.30 | 18.81 | 5.33 | 3.20 | 0.96 | 0.53 | 0.35 | 0.15 | Bal. |
Wrought IN718 | 53.53 | 18.67 | 5.01 | 2.88 | 0.94 | 0.58 | 0.22 | 0.09 | 17.59 |
WAAM IN718 | Wrought IN718 | ||||||
---|---|---|---|---|---|---|---|
Temperature (°C) | 20 | 650 | 1200 | 20 | 650 | 1200 | |
0.2% Yield Strength (MPa) | HD | 622 ± 90 | 552 ± 45 | 108 ± 15 | 580 ± 11 | 510 ± 8.5 | 150 ± 10 |
VD | 620 ± 20 | 550 ± 35 | 105 ± 18 | ||||
UTS (MPa) | HD | 684 ± 40 | 755 ± 60 | 118 ± 10 | 720 ± 20 | 780 ± 22 | 158 ± 8 |
VD | 680 ± 90 | 750 ± 80 | 115 ± 20 | ||||
Elongation (%) | HD | 8 ± 6 | 18 ± 10 | 72 ± 3 | 31 ± 2 | 62 ± 1 | 82 ± 1.5 |
VD | 5 ± 3 | 15 ± 10 | 69 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhujangrao, T.; Veiga, F.; Suárez, A.; Iriondo, E.; Mata, F.G. High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples. Crystals 2020, 10, 689. https://doi.org/10.3390/cryst10080689
Bhujangrao T, Veiga F, Suárez A, Iriondo E, Mata FG. High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples. Crystals. 2020; 10(8):689. https://doi.org/10.3390/cryst10080689
Chicago/Turabian StyleBhujangrao, Trunal, Fernando Veiga, Alfredo Suárez, Edurne Iriondo, and Franck Girot Mata. 2020. "High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples" Crystals 10, no. 8: 689. https://doi.org/10.3390/cryst10080689
APA StyleBhujangrao, T., Veiga, F., Suárez, A., Iriondo, E., & Mata, F. G. (2020). High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples. Crystals, 10(8), 689. https://doi.org/10.3390/cryst10080689