A Nature’s Curiosity: The Argonaut “Shell” and Its Organic Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shell Sampling
2.2. Shell Embedding and Microstructure Analysis
2.3. Shell Matrix Extraction
2.4. Quantification of Sugars and Sulfated Glycosaminoglycans
2.5. Mono-Dimensional PAGE
2.6. Fourier Transform Infra-Red Spectroscopic Characterization (FT-IR)
2.7. Solid State Nuclear Magnetic Resonance (SSNMR)
2.8. In Vitro Interference Test with Calcium Carbonate
2.9. ELISA
2.10. Westernblot
2.11. Immunogold Labeling
2.12. Enzyme-Linked Lectin Assay (ELLA)
2.13. Lectin-Gold Labeling
2.14. Proteomic Analysis of the Shell Extracts
3. Results
3.1. Shell Microstructures
3.2. Quantification of the Organic Matrix in the Shell
3.3. FT-IR Spectroscopy
3.4. Solid State Nuclear Magnetic Resonance
3.5. Quantification of Total Sugars and Sulfated GAGs in the ASM
3.6. SDS-PAGE of the Shell Matrix Extracts
3.7. In-Vitro Crystallization Assay
3.8. Enzyme-Linked Immunosorbent Assay (ELISA)
3.9. Westernblot
3.10. Immunogold Labeling
3.11. Enzyme-Linked Lectin Assay (ELLA)
3.12. Lectingold Labeling
3.13. Proteomic Analysis
4. Discussion
4.1. Microstructure
4.2. Shell Biochemistry
4.3. Proteomics on the Shell Matrix
4.4. Evolutionary Considerations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. A Eur. J. 2006, 12, 980–987. [Google Scholar] [CrossRef]
- Simkiss, K.; Wilbur, K.M. Biomineralization: Cell Biology and Mineral Deposition; Elsevier, Ed.; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Hare, P.E. Amino acids in the proteins from aragonite and calcite in the shells of mytilus californianus. Science 1963, 139, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, M.A. The soluble matrix from Mercenaria mercenaria shell. Biomineralization 1972, 6, 6–11. [Google Scholar]
- Weiner, S. Mollusk shell formation: Isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus. Biochemistry 1983, 22, 4139–4145. [Google Scholar] [CrossRef]
- Rusenko, K.W.; Donachy, J.E.; Wheeler, A.P. Purification and characterization of a shell matrix phosphoprotein from the american oyster. In Surface Reactive Peptides and Polymers; Sykes, C.S., Wheeler, A.P., Eds.; ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 1991; Volume 444, pp. 107–124. [Google Scholar]
- Marin, F.; Luquet, G. Molluscan shell proteins. Comptes Rendus Palevol 2004, 3, 469–492. [Google Scholar] [CrossRef]
- Sarashina, I.; Yamaguchi, H.; Haga, T.; Iijima, M.; Chiba, S.; Endo, K. Molecular evolution and functionally important structures of molluscan dermatopontin: Implications for the origins of molluscan shell matrix proteins. J. Mol. Evol. 2006, 62, 307–318. [Google Scholar] [CrossRef]
- Nishiguchi, M.K.; Mapes, R.H. Cephalopoda. In Phylogeny and Evolution of the Mollusca; Ponder, W.F., Lindberg, D.R., Eds.; University of California Press: Berkeley, CA, USA, 2008; pp. 163–199. [Google Scholar]
- Kröger, B.; Vinther, J.; Fuchs, D. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules. BioEssays 2011, 33, 602–613. [Google Scholar] [CrossRef]
- Brayard, A.; Escarguel, G.; Bucher, H.; Monnet, C.; Brühwiler, T.; Goudemand, N.; Galfetti, T.; Guex, J.; Meehl, G.A.; Arblaster, J.M.; et al. Good genes and good luck: Ammonoid diversity and the end-permian mass extinction. Science 2009, 325, 1118–1121. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.W. Atlas of Invertebrate Macrofossils; Longman & The Palaeontological Association: Harlow, UK, 1985. [Google Scholar]
- Finn, J.K. Family argonautidae. In Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date; Octopods and Vampire Squids. FAO Species Catalogue for Fishery Purposes; Jereb, P., Roper, C.F., Norman, M.D., Finn, J.K., Eds.; FAO Species Catalogue for Fishery Purposes: Rome, Italy, 2014; Volume 3, pp. 228–237. [Google Scholar]
- Finn, J.K.; Victoria, M. Recognising variability in the shells of argonauts (Cephalopoda: Argonautidae): The key to resolving the taxonomy of the family. Mem. Mus. Vic. 2018, 77, 63–104. [Google Scholar] [CrossRef]
- Finn, J.K.; Norman, M.D. The argonaut shell: Gas-mediated buoyancy control in a pelagic octopus. Proc. R. Soc. B Biol. Sci. 2010, 277, 2967–2971. [Google Scholar] [CrossRef] [Green Version]
- Naef, A. Cephalopoda. Fauna Flora Golf. Neapel 1923, 35, 1–863. [Google Scholar]
- Kniprath, E. Ontogeny of the molluscan shell field: A review. Zool. Scr. 1981, 10, 61–79. [Google Scholar] [CrossRef]
- Mitchell, P.R.; Phakey, P.P.; Rachinger, W.A. Ultrastructural observations of the argonaut shell. Scan. Microsc. 1994, 8, 35–46. [Google Scholar]
- Bandel, K.; Dullo, W.C. Zur Schalenstruktur fossiler und rezenter Argonauta-Gehause (Octopoda, Cephalopoda). Nat. Mensch Jahresmitt. Nat. Ges. Nurnb. 1984, 1984, 33–38. [Google Scholar]
- Wolfe, K.; Smith, A.M.; Trimby, P.; Byrne, M. Microstructure of the paper nautilus (Argonauta nodosa) shell and the novel application of electron backscatter diffraction (EBSD) to address effects of ocean acidification. Mar. Biol. 2012, 160, 2271–2278. [Google Scholar] [CrossRef]
- Marie, B.; Luquet, G.; De Barros, J.-P.P.; Guichard, N.; Morel, S.; Alcaraz, G.; Bollache, L.; Marin, F. The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS J. 2007, 274, 2933–2945. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F.; Dubois, K.G.M. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Morrissey, J.H. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 1981, 117, 307–310. [Google Scholar] [CrossRef]
- Campbell, K.P.; MacLennan, D.H.; Jorgensen, A.O. Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye “Stains-all”. J. Biol. Chem. 1983, 258, 11267–11273. [Google Scholar] [PubMed]
- Oudot, M.; Neige, P.; Ben, S.I.; Schmidt, A.; Strugnell, J.M.; Plasseraud, L.; Broussard, C.; Hoffmann, R.; Lukeneder, A.; Marin, F. The shell matrix and microstructure of the Ram’s Horn squid: Molecular and structural characterization. J. Struct. Biol. 2020, 211, 107507. [Google Scholar] [CrossRef] [PubMed]
- Agbaje, O.B.A.; Ben, S.I.; Zax, D.B.; Schmidt, A.; Jacob, D.E. Biomacromolecules within bivalve shells: Is chitin abundant? Acta Biomater. 2018, 80, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, E.; Schaefer, J.; Waugh, J. Magic-angle spinning and polarization transfer in proton-enhanced NMR. J. Magn. Reson. 1977, 28, 105–112. [Google Scholar] [CrossRef]
- Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.; Griffin, R.G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995, 103, 6951–6958. [Google Scholar] [CrossRef]
- Albeck, S.; Aizenberg, J.; Addadi, L.; Weiner, S. Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc. 1993, 115, 11691–11697. [Google Scholar] [CrossRef]
- Pavat, C.; Zanella-Cleon, I.; Becchi, M.; Medakovic, D.; Luquet, G.; Guichard, N.; Alcaraz, G.; Dommergues, J.-L.; Serpentini, A.; Lebel, J.-M.; et al. The shell matrix of the pulmonate land snail Helix aspersa maxima. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 161, 303–314. [Google Scholar] [CrossRef]
- Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 1987, 262, 10035–10038. [Google Scholar]
- Marie, B.; Luquet, G.; Bédouet, L.; Milet, C.; Guichard, N.; Medakovic, D.; Marin, F. Nacre calcification in the freshwater mussel unio pictorum: Carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBioChem 2008, 9, 2515–2523. [Google Scholar] [CrossRef]
- Marin, F.; Pokroy, B.; Luquet, G.; Layrolle, P.; De Groot, K. Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 2007, 28, 2368–2377. [Google Scholar] [CrossRef]
- Kanold, J.M.; Guichard, N.; Immel, F.; Plasseraud, L.; Corneillat, M.; Alcaraz, G.; Brümmer, F.; Marin, F. Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula a comparative characterization of their sugar signature. FEBS J. 2015, 282, 1891–1905. [Google Scholar] [CrossRef] [PubMed]
- Loftus, E.; Rogers, K.; Lee-Thorp, J. A simple method to establish calcite: Aragonite ratios in archaeological mollusc shells. J. Quat. Sci. 2015, 30, 731–735. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radev, L.; Mostafa, N.Y.; Michailova, I.; Salvado, I.M.M.; Fernandes, M.H.V. In vitro bioactivity of collagen/calcium phosphate silicate composites, cross-linked with chondroitin sulfate. Int. J. Mater. Chem. 2012, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jastrzebski, W.; Sitarz, M.; Rokita, M.; Bułat, K. Infrared spectroscopy of different phosphates structures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 722–727. [Google Scholar] [CrossRef]
- Anbalagan, G.; Prabakaran, A.R.; Gunasekaran, S. Spectroscopic characterization of Indian standard sand. J. Appl. Spectrosc. 2010, 77, 86–94. [Google Scholar] [CrossRef]
- Gertman, R.; Ben, S.I.; Kababya, S.; Schmidt, A. In situ observation of the internal structure and composition of biomineralized emiliania huxleyi calcite by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2008, 130, 13425–13432. [Google Scholar] [CrossRef]
- Pomin, V.H. NMR chemical shifts in structural biology of glycosaminoglycans. Anal. Chem. 2013, 86, 65–94. [Google Scholar] [CrossRef]
- Bøggild, O.B. The shell structure of the mollusks. K. Dan. Vidensk. Selsk. Skr. Naturvidensk. Math. Afd. 1930, 9, 231–326. [Google Scholar]
- Kobayashi, I. Internal microstructure of the shell of argonauta argo. Venus 1971, 30, 103–112. [Google Scholar] [CrossRef]
- Young, J.Z. Observations on argonauta and especially its method of feeding. J. Zool. 2009, 133, 471–479. [Google Scholar] [CrossRef]
- Stephens, W.M. The exquisite argonauts. Sea Front. 1965, 11, 139–147. [Google Scholar]
- Turek, R. Chemisch-analytische untersuchungen an mollusken-schalen. Arch. für Nat. Z. für Syst. Zool. 1933, 2, 291–302. [Google Scholar]
- Degens, E.T.; Spencer, D.W.; Parker, R.H. Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 1967, 20, 553–579. [Google Scholar] [CrossRef]
- Marin, F.; Marie, B.; Hamada, S.B.; Silva, P.; Roy, N.L.; Wolf, S.E.; Montagnani, C.; Joubert, C.; Piquemal, D.; Marie, B. “Shellome”: Proteins involved in mollusc shell biomineralization—Diversity, functions. In Recent Advances in Pearl Research; TERRAPUB: Tokyo, Japan, 2013; pp. 149–166. [Google Scholar]
- Dauphin, Y.; Marin, F. The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Cell. Mol. Life Sci. 1995, 51, 278–283. [Google Scholar] [CrossRef]
- Marie, B.; Marin, F.; Marie, A.; Bédouet, L.; Dubost, L.; Alcaraz, G.; Milet, C.; Luquet, G. Evolution of nacre: Biochemistry and proteomics of the shell organic matrix of the cephalopod nautilus macromphalus. ChemBioChem 2009, 10, 1495–1506. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Hervé-Grépinet, V.; Gautron, J.; Cabau, C.; Nys, Y.; Hincke, M. Molecules involved in chemical defence of the chicken egg. In Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption; Nys, Y., Bain, M., Van Immerseel, F., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 183–208. [Google Scholar]
- Sathyan, N.; Philip, R.; Chaithanya, E.R.; Kumar, P.R.A. Identification and molecular characterization of molluskin, a histone-H2A-derived antimicrobial peptide from molluscs. ISRN Mol. Biol. 2012, 2012, 219656. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Silva, P.; Kaandorp, J.A.; Huisman, L.; Marie, B.; Zanella-Cléon, I.; Guichard, N.; Miller, D.J.; Marin, F. The skeletal proteome of the coral acropora millepora: The evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 2013, 30, 2099–2112. [Google Scholar] [CrossRef]
- Weiss, I.M.; Schönitzer, V.; Eichner, N.; Sumper, M. The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Lett. 2006, 580, 1846–1852. [Google Scholar] [CrossRef] [Green Version]
- Marin, F. Mollusc shellomes: Past, present and future. J. Struct. Biol. 2020, 212, 107583. [Google Scholar] [CrossRef]
- Marin, F.; Bundeleva, I.A.; Takeuchi, T.; Immel, F.; Medakovic, D. Organic matrices in metazoan calcium carbonate skeletons: Composition, functions, evolution. J. Struct. Biol. 2016, 196, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Herlitze, I.; Marie, B.; Marin, F.; Jackson, D.J. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. GigaScience 2018, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pabic, C.; Marie, A.; Marie, B.; Percot, A.; Bonnaud-Ponticelli, L.; Lopez, P.-J.; Luquet, G. First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. J. Proteom. 2017, 150, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Čadež, V.; Škapin, S.D.; Leonardi, A.; Križaj, I.; Kazazić, S.; Salopek-Sondi, B.; Sondi, I. Formation and morphogenesis of a cuttlebone’s aragonite biomineral structures for the common cuttlefish (Sepia officinalis) on the nanoscale: Revisited. J. Colloid Interface Sci. 2017, 508, 95–104. [Google Scholar] [CrossRef]
- Tanner, A.R.; Fuchs, D.; Winkelmann, I.E.; Gilbert, M.T.P.; Pankey, M.S.; Ribeiro, Â.M.; Kocot, K.M.; Halanych, K.M.; Oakley, T.H.; Da Fonseca, R.R.; et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162818. [Google Scholar] [CrossRef] [Green Version]
- Marin, F.; Gillibert, M.; Westbroek, P.; Muyzer, G.; Dauphin, Y. Evolution: Disjunct degeneration of immunological determinants. Neth. J. Geosci. 1999, 78, 135–139. [Google Scholar] [CrossRef]
Fractions | Shell Powder (g) | Shell Matrix after Lyophilisation (mg) | Shell Weight % | Whole Shell Matrix (Shell Weight %) | |
---|---|---|---|---|---|
1st extraction | ASM1 | 1.86 | 18.13 | 0.97 | 1.74 |
AIM1 | 14.42 | 0.77 | |||
ASM2 | 1.95 | 17.90 | 0.91 | ≈0.93 | |
AIM2 | <<1—not quantified | Not quantified | |||
2nd extraction | ASM | 2.97 | 27.67 | 0.93 | 1.78 |
AIM | 25.25 | 0.85 | |||
3rd extraction | ASM | 3.76 | 39.70 | 1.05 | 1.78 |
AIM | 27.50 | 0.73 |
Total Sugar Determination | ||
---|---|---|
% of the Whole Matrix | ||
Standard | % min | % max |
Glucose | 4 | 10.7 |
Maltose | 6 | 11 |
Sulfated Glycosaminoglycan Determination | ||
Chondroitin-4-sulfate | 9 | 12 |
Antibody Names | Cross-Reactivity |
---|---|
K5087 | -- |
K5088 | -- |
K5089 | -- |
K5090 | -- |
K4772 | -- |
K4951 | -- |
K4952 | -- |
Preserum α-caspartin | -- |
α-caspartin 17 | -- |
α-calprismin 37 | -- |
α-mucoperlin | -- |
α-crassostrein | -- |
α-prism Pmarg | -- |
α-nacre Pmarg | -- |
α-Mytilus SM | -- |
α-N63 | -- |
α-ASM deg. Upict J39 | -- |
α-ASM deg. Upict J55 | -- |
α-P95 J53 | XXX |
α-P95 J62 | XX |
Lectins | Reactivity (Based on Absolute Value of The Optical Density) |
---|---|
ConA | - + + |
SBA | - - + |
WGA | - + + |
DBA | - - - |
UEA 1 | - - - |
RCA | - - - |
PNA | - - - |
GSL 1 | - - - |
PSA | - - - |
LCA | - - - |
PHA-E | - - - |
PHA-L | - - + |
SJA | - - + |
succ-WGA | - - + |
GSL 2 | - - + |
DSL | - + + |
ECL | - - - |
Jac | - - + |
LEL | - - + |
STL | - - + |
VVA | - - - |
A | List of Peptides Identified Per Extract | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trypsin | Semi-Trypsin | |||||||||
AIM1 | 27 AGFAGDDAPR; AGLQFPVGR; DAIILFK; DAVTYTEHAK; DSYVGDEAQSK; EDIVIAK; EITALAPSTMK; EVQTAVR; GYSFTTTAER; IGSLNSR; ISGLIYEETR; KDTDNIGSSK; LLEGEESR; LLLPGELAK; LNSLSNR; LSSGLNISR; NLSGKER; QVDSVQR; SGSFLSR; SMESCQGDTCK; SSVTTGGVVGR; STELLIR; TFVQGLSIGR; TITLEVEPSDTIENVK; TLSDYNIQK; VAPEEHPVLLTEAPLNPK; VATVSLPR | 50 AFSSNIR; AGFAGDDAPR; AGLQFPVGR; CGGMYQILGK; CLSNGTIKCTE; DAVTYTEHAK; DDFDINR; DSYVGDEAQSK; EGAEVLAKELPQ; EITALAPSTMK; EVHSNVGTSK; EVQTAVR; GSSMKSVGEAMAIGR; GYSFTTTAER; IDENNVPEK; IGSNLSR; ISGLIYEETR; IVDGGISR; IYLSGQK; KDTDNIGSSK; LEITDVQR; LLEGEESR; LLGAFQK; LLLPGELAK; LSSGLNISR; LSSGLNISRN; LSVNLGSGK; MGSGIQYGDA; NLSSINR; NSFDLNR; QSVECESR; SEGSTLTK; SFTIHLGAQMK; SGVQFSK; SMESCQGDTCK; SSSGIGSISSSR; SSSLGFR; SSSVSASSTPSSPTSR; STELLIR; TFVQGLSIGR; TITLEVEPSDTIENVK; TLSDYNIQK; TQSLSHASTTTR; VADGVFR; VAGSVAGR; VAPEEHPVLLTEAPLNPK; VATVSLPR; VGGLNFR; VVSLISPR; YTKIGNTMDR | ||||||||
AIM2 | 57 AGLQFPVGR; AVFVDLEPTVVDEIR; AVLVDLEPGTMDSVR; DAGTIAGLNVMR; DAIILFK; DAVTYTEHAK; DFDQLSPEQSK; DGVITVK; DLTDYLMK; DNIQGITKPAIR; DSYVGDEAQSK; DVNAAIATIK; EDIVIAK; EIQTAVR; EITALAPSTMK; ELISNASDALDK; EREGALK; EVSYVNAR; FDLTGIPSAPR; GVVDSEDLPLNISR; GYSFTTTAER; IGGIGTVPVGR; IIAPPER; IKDPSAK; ILEFFGLK; ILGSVGIEAEASK; ILVGTNFNAVAK; IQLLEEDLER; ISGLIYEETR; LDEVFEK; LDPPLSATDPDK; LEAAEAR; LLLPGELAK; LNDGFYSIK; LNSLSNR; LPLQDVYK; LSDECQEAVR; LVDDLADR; MDATANDLEDIK; NLIGVLK; NLLSVAYK; QEFINEGK; QFSIVAR; SASVDINR; STELLIR; SVDEALR; SYELPDGQVITIGNER; TISDLVK; TNKFDEFFK; TPAYFITK; TVQASVK; TVTAMDVVYALK; VAPEEHPVLLTEAPLNPK; VATVSLPR; VDATIEVDLAEK; VFLENVIR; VISSIEQK | 77 AAGAGDVTANK; AFSSNIR; AGLQFPVGR; AIEENAVGLSDIA; AVFPSIVGR; AVFVDLEPTVVDEIR; AVLVDLEPGTMDSVR; CLSNGTIKCTE; DAGTIAGLNVMR; DAIILFK; DAVTYTEHAK; DFDQLSPEQSK; DLTDYLMK; DNIQGITKPAIR; DSLEICK; DSYVGDEAQSK; DVNAAIATIK; EDIVIAK; EIQTAVR; EITALAPSTMK; ELISNASDALDK; ELTEIR; EVSYVNAR; FDLTGIPSAPR; FTPKYMR; GVVDSEDLPLNISR; GYSFTTTAER; IDENNVPEK; IETEISK; IGGIGTVPVGR; IIAPPER; IISNASCTTNCLAPLAK; ILEFFGLK; ILGSVGIEAEASK; ILVGTNFNAVAK; INSGSLGTVGR; IQLLEEDLER; ISGLIYEETR; IYLSGQK; KGGFEPK; LDPPLSATDPDK; LEAAEAR; LGNDDVK; LGTTVIK; LLLPGELAK; LPLQDVYK; LSDECQEAVR; LSDFYTK; LVDDLADR; MDATANDLEDIK; NLIGVLK; NLLSVAYK; NTQIIDP; QCTCTYK; QEFINEGK; QMCDGSLVAK; SFTIHLGAQMK; SGDDVIVIDR; SIMSVIEK; SKGFDSK; SPATLNSR; SSLKSQPQGNK; SSPATLNSR; STELLIR; STIPKPK; SYELPDGQVITIGNER; TIDSLVK; TNKFDEFFK; TPAYFITK; TVQASVK; TVTAMDVVYALK; VAPEEHPVLLTEAPLNPK; VDATIEVDLAEK; VFLENVIR; VGGLNFR; VISSIEQK; VVSLISPR | ||||||||
ASM1 | 76 AGGFGVAMSK; AGLQFPVGR; AKLDEVFEK; ATMEGILAR; AVDTSIYCK; AVFPSIVGRPR; AVFVDLEPTVVDEIR; DAGTIAGLNVMR; DAIILFK; DAVTYTEHAK; DFDQLSPEQSK; DIDEIVLVGGSTR; DLDEMLVQSR; DLYANTVLSGGTSMYPGIADR; DNIQGITKPAIR; DSYVGDEAQSK; DVNAAIATIK; EDIVIAK; EIAEAYLGK; EIQTAVR; ELISNASDALDK; FLESGGK; GDILAAR; GLDVIAQAQSGTGK; GYSFTTTAER; HQGVMVGMGQK; IASDGLK; IFSGDIK; IGGIGTVPVGR; IIAPPER; IINEPTAAAIAYGLDK; ILVGTNFNAVAK; IMNTFSVVPSPK; ISEQFTAMFR; ISGLIYEETR; LAPEYEK; LDEVFEK; LEAAEAR; LFSDYLYFGK; LLEGEESR; LLLPGELAK; LQNTDYR.; LSDECQEAVR; LSSGLNISR; MDATANDLEDIK; NCVDATDGLK; NLIGVLK; NLLSVAYK; QFSIVAR; QNKSAVK; QVLVNILVK; SASVDINR; SGSFLSR; STELLIR; SYELDTIAAAQGIK; SYELPDGQVITIGNER; TFVQGLSIGR; TITLEVEPSDTIENVK; TLEINPR; TLEPVEK; TLSDYNIQK; TNKFDEFFK; TPAYFITK; TSEGLDELDTK; TTPSYVAFTDAER; TVTAMDVVYALK; VAPEEHPVLLTEAPLNPK; VATVSLPR; VFLENVIR; VFSGTVSTGQK; VLITTDLLAR; VLSPDAK; VSAIDAFR; YDIILIQEIR; YEDENKLR; YLTVATIFR | 99 ADPIAYR; AFSSNIR; AGGFGVAMSK; AGLQFPVGR; AKLDEVFEK; ATMEGILAR; AVDTSIYCK; AVFPSIVGR; AVFPSIVGRPR; AVFVDLEPTVVDEIR; CLSNGTIKCTE; DAGTIAGLNVMR; DAIILFK; DAVTYTEHAK; DFDQLSPEQSK; DIDEIVLVGGSTR; DLDEMLVQSR; DLYANTVLSGGTSMYPGIADR; DNIQGITKPAIR; DSYVGDEAQSK; DVNAAIATIK; EDIVIAK; EIAEAYLGK; EIQTAVR; ELISNASDALDK; FLESGGK; GDILAAR; GLDVIAQAQSGTGK; GYSFTTTAER; HQGVMVGMGQK; IASDGLK; IFSGDIK; IGGIGTVPVGR; IIAPPER; IINEPTAAAIAYGLDK; IINEPTAAALAYGLDK; ILVGTNFNAVAK; IMNTFSVVPSPK; ISEQFTAMFR; ISGLIYEETR; IVDLILR; IYLSGQK; KVISETK; LAPEYEK; LDEVFEK; LEAAEAR; LEQLLQR; LFSDYLYFGK; LLEGEESR; LLLPGELAK; LNGSNIR; LQNTDYR; LQNYNAKEN; LSDECQEAVR; LSDFYTK; LSVNLGSGK; MDATANDLEDIK; MGSGIQYGDA; NLIGVLK; NSFDLNR; NTQIIDP; QCTCTYK; QNKSAVK; QVLVNILVK; SEGSTLTK; SFTIHLGAQMK; SGDDVIVIDR; SGDNVILLDR; SGVQFSK; SPATLNSR; SRPPVLPNDK; SSPATLNSR; SSSLGFR; STELLIR; SYELDTIAAAQGIK; SYELPDGQVITIGNER; TFVQGLSIGR; TITLEVEPSDTIENVK; TLEINPR; TLEPVEK; TLSDYNIQK; TNKFDEFFK; TPAYFITK; TSEGLDELDTK; TTPSYVAFTDAER; TVTAMDVVYALK; VAPEEHPVLLTEAPLNPK; VDLVERVNEFLK; VFLENVIR; VFSGTVSTGQK; VGTRVDAK; VLITTDLLAR; VSAIDAFR; VSVFMDK; VVSLISPR; YDIILIQEIR; YEDENKLR; YGSGSLTGFLSTDK; YLTVATIFR | ||||||||
ASM2 | 65 AGLQFPVGR; AKLDEVFEK; AVFVDLEPTVVDEIR; AVLVDLEPGTMDSVR; DAGTIAGLNVMR; DAHFILR; DAIILFK; DAVTYTEHAK; DIDEIVLVGGSTR; DLDEMLVQSR; DLYANTVLSGGSTMYPGIADR; DSYVGDEAQSK; DSYVGDEAQSKR; DTYSISSQR; DVNAAIATIK; EIAEAYLGK; EITALAPSTMK; EQFSNYR; EQLRDPIQEVK; EVDEQMLNIQSK; FDLTGIPSAPR; GDILAAR; GVVDSEDLPLNISR; HLQLAIR; IAGEASR; IASDGLK; IDSLSVR; IFSGDIK; IINEPTAAAIAYGLDK; ILGSVGIEAEASK; ILVGTNFNAVAK; ISGLIYEETR; KDTDNIGSSK; KVEVEVK; LAVNMVPFPR; LEAAEAR; LGVIEDPSNR; LIPMMDLNK; LLLPGELAK; LNSLSNR; LSDECQEAVR; LTTYTALMQAK; LVDDLADR; MDATANDLEDIK; NLLSVAYK; NNIVIQNDQNR; QFSIVAR; QVLVNILVK; SAIMTGR; SASVDINR; STELLIR; TASEHVIK; TFVQGLSIGR; TNKFDEFFK; TSEGLDELDTK; TVQASVK; TVTAMDVVYALK; VACTNWR; VAPEEHPVLLTEAPLNPK; VATVSLP; VDNICNVAK; VFSGTVSTGQK; VLSPDAK; VTAEDKGTGNK; YDEMVSNMK | 83 ADQDDDSLVR; AFSSNIR; AGLQFPVGR; AKLDEVFEK; AVFVDLEPTVVDEIR; AVLVDLEPGTMDSVR; DAGTIAGLNVMR; DAHFILR; DAIILFK; DAVTYTEHAK; DIDEIVLVGGSTR; DIENIPVPKP; DLDEMLVQSR; DLYANTVLSGGSTMYPGIADR; DSYVGDEAQSK; DSYVGDEAQSKR; DTYSISSQR; DVNAAIATIK; ECKAGAAEK; EGAEVLAKELPQ; EGNNFQLFQ; EIAEAYLGK; EITALAPSTMK; EQFSNYR; EQLRDPIQEVK; EVDEQMLNIQSK; FDLTGIPSAPR; FSEGSTLTK; GDILAAR; GVVDSEDLPLNISR; HLQLAIR; IAGEASR; IASDGLK; IDENNVPEK; IFSGDIK; IINEPTAAAIAYGLDK; ILGSVGIEAEASK; ILVGTNFNAVAK; ISGLIYEET; IYLSGQK; KDTDNIGSSK; KTDTDNWK; LAVNMVPFPR; LEAAEAR; LGNDDVK; LGVIEDPSNR; LLLPGELAK; LSDECQEAVR; LSDFYTK; LSVNLGSGK; LTTYTALMQAK; LVDDLADR; MDATANDLEDIK; MGSGIQYGDA; NLLSVAYK; NNIVIQNDQNR; NSFDLNR; QCTCTYK; QGFGCGDVR; QPSITVK; QVLVNILVK; SAIMTGR; SEGSTLTK; SGDDVIVIDR; SGDNVILLDR; SRPPVLPNDK; SSPATLNSR; SSSVSASSTPSSPTSR; STELLIR; TFVQGLSIGR; TNKFDEFFK; TSEGLDELDTK; TVTAMDVVYALK; VAALCSTIPF; VACTNWR; VAPEEHPVLLTEAPLNPK; VDNICNVAK; VFSGTVSTGQK; VSILSMR; VTAEDKGTGNK; VVSLISPR; YDEMVSNMK; YGSGSLTGFLSTDK | ||||||||
B | Share Peptides by Extract, Two Per Two. | |||||||||
Trypsin | Semi-trypsin | |||||||||
AIM1 | AIM2 | ASM1 | ASM2 | AIM1 | AIM2 | ASM1 | ASM2 | |||
AIM1 | 13/57 | 17/76 | 13/65 | AIM1 | 16/77 | 21/99 | 21/83 | |||
AIM2 | 13/27 | 36/76 | 30/65 | AIM2 | 16/50 | 38/99 | 33/83 | |||
ASM1 | 17/27 | 36/57 | 33/65 | ASM1 | 21/50 | 38/77 | 41/83 | |||
ASM2 | 13/27 | 30/57 | 33/76 | ASM2 | 21/50 | 33/77 | 41/99 |
TRYPSIN | |||||||||
---|---|---|---|---|---|---|---|---|---|
AIM1 | AIM2 | ASM1 | ASM2 | ||||||
T | ST | T | ST | T | ST | T | ST | ||
PREDICTED: histone H3.3-like Octopus bimaculoides (XP_014778206.1) | P/A | X | X | X | X | X | X | X | X |
Cov. | 15.6% | 17% | 10.8% | 10.88% | 10.8% | 10.88% | 10.8% | 10.88% | |
Pep. | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | |
Histone H4 Acrolepiopsis assectella (H4_ACRAS) | P/A | X | X | X | X | X | |||
Cov. | 19.4% | 19.41% | 62.13% | 50.5% | 33% | ||||
Pep. | 2 | 2 | 6 | 5 | 3 | ||||
Tubulin alpha chain Enteroctopus dofleini (TBA_ENTDO) | P/A | X | X | X | X | X | X | ||
Cov. | 5.54% | 5.54% | 5.54% | 5.54% | 5.54% | 5.54% | |||
Pep. | 2 | 2 | 2 | 2 | 2 | 2 | |||
TROPOMYOSIN Spirula spirula (Gene.1464c49820) | P/A | X | X | X | X | X | X | ||
Cov. | 15.6% | 13.93% | 5.7% | 5.74% | 5.7% | 5.74% | |||
Pep. | 2 | 2 | 1 | 1 | 1 | 1 | |||
Actin Brugia malayi (ACT_BRUMA) | P/A | X | X | X | X | ||||
Cov. | 16% | 16% | 21.5% | 23.93% | |||||
Pep. | 5 | 5 | 7 | 8 | |||||
Ubiquitin Ceratitis capitata (UBIQ_CERCA) | P/A | X | X | X | X | ||||
Cov. | 33% | 33% | 33% | 33% | |||||
Pep. | 2 | 2 | 2 | 2 | |||||
TRANSCRIPTIONAL REGULAR ATRX-like Spirula spirula (Gene.30195::c80181) | P/A | X | X | ||||||
Cov. | 5% | 5% | |||||||
Pep. | 1 | 1 | |||||||
MITOCHONDRIAL TRANSCRIPTION RESCUE FACTOR Spirula spirula (Gene.23120::c53195) | P/A | X | X | X | |||||
Cov. | 9% | 10.1% | 9% | ||||||
Pep. | 1 | 2 | 1 | ||||||
60S RIBOSOMAL PROTEIN Spirula spirula (Gene.29788::c77903) | P/A | X | X | X | X | ||||
Cov. | 14.3% | 14.3% | 14.3% | 14.3% | |||||
Pep. | 1 | 1 | 1 | 1 | |||||
HEPARAN SULFATE SULFOTRANSFERASE Spirula spirula (Gene.5097::c36049) | P/A | X | X | X | X | ||||
Cov. | 2.35% | 2.35% | 5% | 5% | |||||
Pep. | 1 | 1 | 2 | 2 | |||||
14-3-3 protein zeta Aedes aegypti (1433Z_AEDAE) | P/A | X | X | X | |||||
Cov. | 6.45% | 6.45% | 3.2% | ||||||
Pep. | 2 | 2 | 1 | ||||||
Histone H2B.1/H2B.2 Tigriopus californicus (H2B1_TIGCA) | P/A | X | X | X | X | ||||
Cov. | 13% | 13% | 13% | 13% | |||||
Pep. | 2 | 2 | 2 | 2 | |||||
TUBULIN (beta) Spirula spirula (Gene.2411c23358) | P/A | X | X | X | X | ||||
Cov. | 7% | 7% | 8.3% | 2.7% | |||||
Pep. | 3 | 3 | 3 | 1 | |||||
ELONGATION FACTOR Spirula spirula (Gene.193c18579) | P/A | X | X | X | X | ||||
Cov. | 6.5% | 6.5% | 6.5% | 6.5% | |||||
Pep. | 1 | 1 | 1 | 1 | |||||
PREDICTED: uncharacterized protein LOC106879316 Octopus bimaculoides (XP_014784309.1) | P/A | X | |||||||
Cov. | 5.46% | ||||||||
Pep. | 1 | ||||||||
Potassium channel toxin alpha-KTx 18.1 Tityus obscurus (KA181_TITOB) | P/A | X | X | ||||||
Cov. | 31.42% | 31.42% | |||||||
Pep. | 1 | 1 | |||||||
PREDICTED: uncharacterized protein LOC106881861 Octopus bimaculoides (XP_014787865.1) | P/A | X | |||||||
Cov. | 5.64% | ||||||||
Pep. | 1 | ||||||||
Actin, cytoskeletal Heliocidaris erythrogramma (ACTM_HELER) | P/A | X | X | ||||||
Cov. | 27.9% | 24.73% | |||||||
Pep. | 8 | 9 | |||||||
ATP-dependent RNA helicase OR eukaryotic initiation factor Spirula spirula (Gene.3798::c31126) | P/A | X | X | ||||||
Cov. | 5.66% | 5.66% | |||||||
Pep. | 2 | 2 | |||||||
UNCHARACTERIZED Spirula spirula (Gene.2897c68969) | P/A | X | X | ||||||
Cov. | 6.1% | 6.1% | |||||||
Pep. | 1 | 1 | |||||||
Actin-3 Diphyllobothrium dendriticum (ACT3_DIPDE) | P/A | X | X | ||||||
Cov. | 13.53% | 13.53% | |||||||
Pep. | 4 | 4 | |||||||
PROTEIN DISULPHIDE ISOMERASE Spirula spirula (Gene.3279::c29062) | P/A | X | X | ||||||
Cov. | 7.29% | 7.29% | |||||||
Pep. | 4 | 4 | |||||||
Actin-3 (Fragment) Echinococcus granulosus (ACT3_ECHGR) | P/A | X | X | ||||||
Cov. | 16.18% | 16.18% | |||||||
Pep. | 3 | 3 | |||||||
14-3-3 PROTEIN Spirula spirula (Gene.2785c60160) | P/A | X | X | ||||||
Cov. | 6.51% | 6.51% | |||||||
Pep. | 2 | 2 | |||||||
Histone H2A, sperm (Fragment) Lytechinus pictus (H2A3_LYTPI) | P/A | X | X | ||||||
Cov. | 14.28% | 14.28% | |||||||
Pep. | 2 | 2 | |||||||
Histone H2B.1, embryonic Psammechinus miliaris (H2BE1_PSAMI) | P/A | X | X | ||||||
Cov. | 13% | 13% | |||||||
Pep. | 2 | 2 | |||||||
ENDOPLASMIN-LIKE Spirula spirula (Gene.16::c147) | P/A | X | X | ||||||
Cov. | 7.63% | 7.63% | |||||||
Pep. | 1 | 1 | |||||||
SEMI-TRYPSIN | |||||||||
PREDICTED: ras-related protein Rab-4B-like Octopus bimaculoides (XP_014772694.1) | P/A | X | X | X | |||||
Cov. | 5.49% | 5.49% | 5.49% | ||||||
Pep. | 1 | 1 | 1 | ||||||
E3 ubiquitin-protein ligase HECTD1-like isoform Spirula spirula (Gene.28385::c63884) | P/A | X | |||||||
Cov. | 6.18% | ||||||||
Pep. | 1 | ||||||||
PREDICTED: serine-rich adhesin for platelets-like isoform X2 Octopus bimaculoides (Gene.104::c674) | P/A | X | |||||||
Cov. | 8% | ||||||||
Pep. | 1 | ||||||||
Histone H4 Aplysia californica (H4_APLCA) | P/A | X | X | X | |||||
Cov. | 56.31% | 52.42% | 31% | ||||||
Pep. | 5 | 5 | 3 | ||||||
Glyceraldehyde-3-phosphate dehydrogenase 2 Caenorhabditis briggsae (G3P2_CAEBR) | P/A | X | |||||||
Cov. | 4.99% | ||||||||
Pep. | 1 | ||||||||
PREDICTED: mitochondrial import inner membrane translocase subunit TIM14-like isoform Spirula spirula (Gene.29359::c72821) | P/A | X | |||||||
Cov. | 5.99% | ||||||||
Pep. | 1 | ||||||||
PREDICTED: protein Wnt-7b-like Octopus bimaculoides (XP_014780612.1) | P/A | X | |||||||
Cov. | 5.82% | ||||||||
Pep. | 1 | ||||||||
Uncharacterized protein Spirula spirula (Gene.21622c52882) | P/A | X | X | ||||||
Cov. | 6.42% | 6.42% | |||||||
Pep. | 1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oudot, M.; Shir, I.B.; Schmidt, A.; Plasseraud, L.; Broussard, C.; Neige, P.; Marin, F. A Nature’s Curiosity: The Argonaut “Shell” and Its Organic Content. Crystals 2020, 10, 839. https://doi.org/10.3390/cryst10090839
Oudot M, Shir IB, Schmidt A, Plasseraud L, Broussard C, Neige P, Marin F. A Nature’s Curiosity: The Argonaut “Shell” and Its Organic Content. Crystals. 2020; 10(9):839. https://doi.org/10.3390/cryst10090839
Chicago/Turabian StyleOudot, Morgane, Ira Ben Shir, Asher Schmidt, Laurent Plasseraud, Cédric Broussard, Pascal Neige, and Frédéric Marin. 2020. "A Nature’s Curiosity: The Argonaut “Shell” and Its Organic Content" Crystals 10, no. 9: 839. https://doi.org/10.3390/cryst10090839
APA StyleOudot, M., Shir, I. B., Schmidt, A., Plasseraud, L., Broussard, C., Neige, P., & Marin, F. (2020). A Nature’s Curiosity: The Argonaut “Shell” and Its Organic Content. Crystals, 10(9), 839. https://doi.org/10.3390/cryst10090839