Surface Porosity of Natural Diamond Crystals after the Catalytic Hydrogenation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arima, M.; Inoue, M. High pressure experimental study on growth and resorption of diamond in kimberlite melt. In Proceedings of the 6th International Kimberlite Conference, UIGGM SB RAS, Novosibirsk, Russia, 6–12 August 1995; pp. 8–10. [Google Scholar]
- Sonin, V.M.; Zhimulev, E.I.; Tomilenko, A.A.; Chepurov, S.A.; Chepurov, A.I. Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability. Geol. Ore Deposit. 2004, 46, 182–190. [Google Scholar]
- Kozai, Y.; Arima, M. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Mineral. 2005, 90, 1759–1766. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Mineral. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Arima, M.; Kozai, Y. Diamond dissolution rates in kimberlitic melts at 1300–1500 °C in the graphite stability field. Eur. J. Mineral. 2008, 20, 357–364. [Google Scholar] [CrossRef]
- Sonin, V.M.; Zhimulev, E.I.; Pomazanskiy, B.S.; Zemnuhov, A.L.; Chepurov, A.A.; Afanasiev, V.P.; Chepurov, A.I. Morphological features of diamond crystals dissolved in Fe0.7S0.3 melt at 4 GPa and 1400 °C. Geol. Ore Deposit. 2018, 60, 82–92. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Sonin, V.M.; Zhimulev, E.I.; Chepurov, A.A.; Pomazansky, B.S.; Zemnukhov, A.L. Dissolution of diamond crystals in a heterogeneous (metal-sulfide-silicate) medium at 4 GPa and 1400 °C. J. Miner. Petrol. Sci. 2018, 113, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Chepurov, A.I.; Sonin, V.M.; Zhimulev, E.I.; Chepurov, A.A. Preservation conditions of CLIPPIR diamonds in the earth’s mantle in a heterogeneous metal-sulphide-silicate medium (experimental modeling). J. Miner. Petrol. Sci. 2020, 115, 236–246. [Google Scholar] [CrossRef]
- Hyde, M.E.; Jacobs, R.; Compton, R.G. In Situ AFM Studies of Metal Deposition. J. Phys. Chem. B 2002, 106, 11075–11080. [Google Scholar] [CrossRef]
- Fujishima, A.; Einaga, Y.; Rao, T.N.; Tryk, D.A. Diamond Electrochemistry; Elsevier Amsterdam-BKC: Tokyo, Japan, 2005; p. 586. [Google Scholar]
- Salazar-Banda, G.R.; Suffredini, H.B.; Avaca, L.A. Improved Stability of PtOx Sol-Gel-Modified Diamond Electrodes Covered with a Nafion® Film. J. Bras. Chem. Soc. 2005, 16, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Welch, C.M.; Hyde, M.E.; Banks, C.E.; Compton, R.G. The Detection of Nitrate Using in-situ Copper Nanoparticle Deposition at a Boron Doped Diamond Electrode. Anal. Sci. 2005, 21, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Simm, A.O.; Ji, X.; Banks, C.E.; Hyde, M.E.; Compton, R.G. AFM studies of metal deposition: Instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. Chemphyschem 2006, 7, 704–709. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal Conductivity of Diamond Composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef] [Green Version]
- Weber, L.; Tavangar, R. Diamond-based Metal Matrix Composites for Thermal Management made by Liquid Metal Infiltration-Potential and Limits. Adv. Mat. Res. 2009, 59, 111–115. [Google Scholar] [CrossRef]
- Piguillem Palacios, S.V.; Hoffmann, N.; Regiart, M.; Rubilar, O.; Tortella, G.; Raba, J.; Fernández-Baldo, M.A. Nanostructured Platforms Integrated to Biosensors: Recent Applications in Agriculture; Biosensors in Agriculture: Recent Trends and Future Perspectives. Concepts and Strategies in Plant Sciences; Pudake, R.N., Jain, U., Kole, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Artini, C.; Muolo, M.L.; Passerone, A. Diamond-metal interfaces in cutting tools: A review. J. Mater. Sci. 2012, 47, 3252–3264. [Google Scholar] [CrossRef]
- Field, E.J. The Properties of Natural and Synthetic Diamond; Academic Press: London, UK, 1992. [Google Scholar]
- Masuda, H.; Watanabe, M.; Yasui, K.; Tryk, D.A.; Rao, T.N.; Fujishima, A. Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 2000, 12, 444–447. [Google Scholar] [CrossRef]
- Honda, K.; Rao, T.N.; Tryk, D.A.; Fujishima, A.; Watanabe, M.; Yasui, K.; Masuda, H. Fabrication of through-hole diamond membranes by plasma etching using anodic porous alumina mask. Electrochem. Solid St. 2001, 4, 101–103. [Google Scholar] [CrossRef]
- Li, C.Y.; Hatta, A. Electronic and structural properties on nanowhiskers fabricated on iron coated diamond films by radio frequency O2 plasma etching. J. New Mat. Electr. Sys. 2007, 10, 221–224. [Google Scholar]
- Kuroshima, H.; Makino, T.; Yamasaki, S.; Matsumoto, T.; Inokuma, T.; Tokuda, N. Mechanism of anisotropic etching on diamond (111) surfaces by a hydrogen plasma treatment. Appl. Surf. Sci. 2017, 422, 452–455. [Google Scholar] [CrossRef]
- Ralchenko, V.G.; Kononenko, T.V.; Pimenov, S.M.; Chernenko, N.V.; Loubnin, E.N.; Armeyev, V.Y.; Zlobin, A.Y. Catalytic interaction of Fe, Ni and Pt with diamond films: Patterning applications. Diam. Relat. Mater. 1993, 2, 904–909. [Google Scholar] [CrossRef]
- Sonin, V.M.; Chepurov, A.I.; Fedorov, I.I. The action of iron particles at catalyzed hydrogenation of {100} and {110} faces of synthetic diamond. Diam. Relat. Mater. 2003, 12, 1559–1562. [Google Scholar] [CrossRef]
- Ohashi, T.; Sugimoto, W.; Takasu, Y. Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen. Diam. Relat. Mater. 2011, 20, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Chepurov, A.; Sonin, V.; Shcheglov, D.; Latyshev, A.; Filatov, E.; Yelisseyev, A. A highly porous surface of synthetic monocrystalline diamond: Effect of etching by Fe nanoparticles in hydrogen atmosphere. Int. J. Refract. Met. Hard Mater. 2018, 76, 12–15. [Google Scholar] [CrossRef]
- Cui, N.; Wang, F.; Guo, L. Catalytic etching of {100}-oriented diamond coating with Ni and Cu nanoparticles under hydrogen. Int. J. Mod. Phys. B 2020, 34, 2050062. [Google Scholar] [CrossRef]
- Cui, N.; Wang, F.; Ding, H.; Guo, L. Investigation of <100>-oriented etching pattern on diamond coated with Ni and Cu. Int. J. Mod. Phys. B 2020, 34, 2050155. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Tian, Y.; Xiang, X.; Zhang, J.; Li, S.; He, H. Porous single-crystal diamond. Carbon 2021, 183, 259–266. [Google Scholar] [CrossRef]
- Chepurov, A.A.; Sonin, V.M.; Dereppe, J.M.; Zhimulev, E.I.; Chepurov, A.I. How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology. Eur. J. Mineral. 2020, 32, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, I.I.; Chepurov, A.I.; Sonin, V.M.; Chepurov, A.A.; Logvinova, A.M. Experimental and thermodynamic study of the crystallization of diamond and silicates in a metal-silicate-carbon system. Geochem. Int. 2008, 46, 340–350. [Google Scholar] [CrossRef]
- Masaitis, V.L. Diamond-Bearing Impactites of the Popigai Astrableme; VSEGEI: St. Petersburg, Russia, 1998. (In Russian) [Google Scholar]
- Yelisseyev, A.P.; Afanasiev, V.P.; Panchenko, A.V.; Gromilov, S.A.; Kaichev, V.V.; Saraev, A.A. Yakutites: Are they impact diamonds from the Popigai crater? Lithos 2016, 265, 278–291. [Google Scholar] [CrossRef]
- Kryukov, V.A.; Tolstov, A.V.; Afanasiev, V.P.; Samsonov, N.Y.; Kryukov, Y.V. Ensuring the Russian High-Tech Industry Resources by Products Based on Giant Fields of The Arctic—Tomtor Niobium-Rare-Earth and Ultra-Hard Abrasive Popigai Material; Interexpo GEO-Siberia 3; SSUGT: Novosibirsk, Russia, 2016; pp. 188–192. (In Russian) [Google Scholar]
- Yelisseyev, A.; Khrenov, A.; Afanasiev, V.; Pustovarov, V.; Gromilov, S.; Panchenko, A.; Pokhilenko, N.; Litasov, K. Luminescence of natural carbon nanomaterial: Impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 2015, 58, 69–77. [Google Scholar] [CrossRef]
- Afanasiev, V.; Gromilov, S.; Sonin, V.; Zhimulev, E.; Chepurov, A. Graphite in rocks of the Popigai impact crater: Residual or retrograde? Turk. J. Earth Sci. 2019, 28, 470–477. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Woods, G.S.; van Wyk, J.A.; Collins, A.T. The Nitrogen Content of Type Ib Synthetic Diamond. Phil. Mag. 1990, B62, 589–595. [Google Scholar] [CrossRef]
- Boyd, S.R.; Kiflawi, I.; Woods, G.S. IR Absorption by the B Nitrogen Aggregate in Diamond. Phil. Mag. 1995, B72, 351–361. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Sonin, V.M.; Dereppe, J.-M. The channeling action of iron particles in the catalyzed hydrogenation of synthetic diamond. Diam. Relat. Mater. 2000, 9, 1435–1438. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Sonin, V.M.; Shamaev, P.P. Using catalytic hydrogenolysis for brazing diamond tools. Weld. Int. 2002, 16, 978–980. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Sonin, V.M.; Shamaev, P.P.; Yelisseyev, A.P.; Fedorov, I.I. The action of iron particles at catalyzed hydrogenation of natural diamond. Diam. Relat. Mater. 2002, 11, 1592–1596. [Google Scholar] [CrossRef]
- Lifshits, S.K.; Grigor’ev, A.P.; Shamaev, P.P. Effect of Different Metals on Catalyzed Hydrogenation of Carbon (Diamond). Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 1990, 5, 135–139. (In Russian) [Google Scholar]
- Sonin, V.M.; Chepurov, A.I. The Interaction of Diamond and Disperse Metals of the Iron Group in a Hydrogen Atmosphere. Inorg. Mater. 1994, 30, 411–414. [Google Scholar]
- Sonin, V.M.; Chepurov, A.I. Diamond Hydrogenation in the Presence of Iron Powder. Inorg. Mater. 1996, 32, 373–375. [Google Scholar]
- Sonin, V.M. Interaction of fine Fe particles with structural defects on {111} faces of synthetic diamond crystals in a hydrogen atmosphere. Inorg. Mater. 2004, 40, 20–22. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Sonin, V.M.; Chepurov, A.A.; Zhimulev, E.I.; Tolochko, B.P.; Eliseev, V.S. Interaction of diamond with ultrafine Fe powders prepared by different procedures. Inorg. Mater. 2011, 47, 864–868. [Google Scholar] [CrossRef]
- Bogatyreva, G.P.; Kruk, V.B.; Sokhina, L.A. Determination of diamond content in the diamond-bearing materials. Sintet. Almazy 1974, 5, 19–21. [Google Scholar]
- Orlov, Y.L. The Mineralogy of Diamond; JohnWiley: New York, NY, USA, 1977; p. 233. [Google Scholar]
- Collins, A.T.; Kanda, H.; Kitawaki, H. Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam. Relat. Mater. 2000, 9, 113–122. [Google Scholar] [CrossRef]
- Collins, A.T. The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diam. Relat. Mater. 2003, 12, 1976–1983. [Google Scholar] [CrossRef]
- Dobrinets, I.A.; Vins, V.G.; Zaitsev, A.M. HPHT-Treated Diamonds: Diamonds Forever; Springer: Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Shigley, J.E.; Breeding, C.M. Optical defects in diamond: A quick reference chart. Gems. Gemol. 2013, 45, 107–111. [Google Scholar] [CrossRef]
- Gurney, J.J.; Helmstaedt, H.H.; Richardson, S.H.; Shirey, S.B. Diamonds through Time. Econ. Geol. 2010, 105, 689–712. [Google Scholar] [CrossRef]
- Yelisseyev, A.; Meng, G.S.; Afanasiev, V.; Pokhilenko, N.; Pustovarov, V.; Isakova, A.; Lin, Z.S.; Lin, H.Q. Optical properties of impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 2013, 37, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Kadik, A.A.; Lukanin, O.A. Outgassing of the Upper Mantle Upon Melting; Nauka: Moscow, Russia, 1986; p. 97. (In Russian) [Google Scholar]
- Vishnevsky, S.A.; Raitala, J.; Gibsher, N.A.; Okhman, T.; Palchik, N.A. Impact tuffisites of the Popigai astrobleme. Rus. Geol. Geophys. 2006, 47, 711–730. [Google Scholar]
- Vishnevsky, S.A.; Ivashchenko, V.I.; Raitala, J.; Palchik, N.A.; Leonova, I.V. Impact metamorphic carbon material and the host impactites from the Janisjärvi impact crater, Karelia; new data. Geologiyai Poleznye Iskopaemye Karelii 2004, 7, 185–192. (In Russian) [Google Scholar]
- Schmitt, R.T.; Lapke, C.; Lingemann, C.M.; Siebenschock, M.; Stöffler, D. Distribution and origin of impact diamonds in the Ries crater, Germany. Geol. Soc. Am. Spec. Pap. 2005, 384, 299–314. [Google Scholar] [CrossRef]
- Pratesi, G. Impact diamonds: Formation, mineralogical features and cathodoluminescence properties. In Cathodoluminescence and Its Application in the Planetary Sciences; Gucsik, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Osovetsky, B.M.; Naumova, O.B. The micro- and nanoforms of impact diamonds surface. Bull. Perm Univ. Geol. 2014, 2, 8–19. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Orlov, Y.L. Diamond Morphology; Izd. AN SSSR: Moscow, Russia, 1963. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chepurov, A.; Sonin, V.; Shcheglov, D.; Zhimulev, E.; Sitnikov, S.; Yelisseyev, A.; Chepurov, A. Surface Porosity of Natural Diamond Crystals after the Catalytic Hydrogenation. Crystals 2021, 11, 1341. https://doi.org/10.3390/cryst11111341
Chepurov A, Sonin V, Shcheglov D, Zhimulev E, Sitnikov S, Yelisseyev A, Chepurov A. Surface Porosity of Natural Diamond Crystals after the Catalytic Hydrogenation. Crystals. 2021; 11(11):1341. https://doi.org/10.3390/cryst11111341
Chicago/Turabian StyleChepurov, Aleksei, Valeri Sonin, Dmitry Shcheglov, Egor Zhimulev, Sergey Sitnikov, Alexander Yelisseyev, and Anatoly Chepurov. 2021. "Surface Porosity of Natural Diamond Crystals after the Catalytic Hydrogenation" Crystals 11, no. 11: 1341. https://doi.org/10.3390/cryst11111341