Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals
Abstract
:1. Introduction
2. Design Principles of the Device
3. Device Fabrication and Experimental Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Granqvist, C.G. Electrochromism and smart window design. Solid State Ionics. 1992, 53, 479–489. [Google Scholar] [CrossRef]
- Cupelli, D.; Nicoletta, F.P.; Manfredi, S.; Vivacqua, M.; Formoso, P.; Filpo, G.D.; Chidichimo, G. Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol. Energy Mater. Sol. Cells 2009, 93, 2008–2012. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Meng, Y.; Zhang, Y.; Wei, Z. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384–8389. [Google Scholar] [CrossRef]
- Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D.J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326. [Google Scholar] [CrossRef]
- Xie, Z.; Jin, X.; Chen, G.; Xu, J.; Chen, D.; Shen, G. Integrated smart electrochromic windows for energy saving and storage applications. Chem. Commun. 2014, 50, 608–610. [Google Scholar] [CrossRef]
- Wu, C.-C.; Liou, J.-C.; Diao, C.-C. Self-powered smart window controlled by a high open-circuit voltage InGaN/GaN multiple quantum well solar cell. Chem. Commun. 2015, 51, 12625–12628. [Google Scholar] [CrossRef]
- Shin, H.; Seo, S.; Park, C.; Na, J.; Han, M.; Kim, E. Energy saving electrochromic windows from bistable low-HOMO level conjugated polymers. Energy Environ. Sci. 2016, 9, 117–122. [Google Scholar] [CrossRef]
- Llordés, A.; Wand, Y.; Fernadez-Martinez, A.; Xiao, P.; Lee, T.; Poulain, A.; Zandi, O.; Cabezas, C.A.S.; Henkelman, G.; Milliron, D.J. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat. Mater. 2016, 15, 1267–1273. [Google Scholar] [CrossRef]
- Cai, G.; Darmawan, P.; Cheng, X.; Lee, P.S. Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 2017, 7, 1602598. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Wittwer, V. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Sol. Energy Mater. Sol. Cells 2009, 93, 2032–2039. [Google Scholar] [CrossRef]
- Granqvist, C.G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Jensen, J.; Hösel, M.; Dyer, A.L.; Kerbs, F.C. Development and manufacture of polymer-based electrochromic devices. Adv. Funct. Mater. 2015, 25, 2073–2090. [Google Scholar] [CrossRef]
- Xia, X.; Ku, Z.; Zhou, D.; Zhong, Y.; Zhang, Y.; Wang, Y.; Huang, M.J.; Tu, J.; Fan, H.J. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horiz. 2016, 3, 588. [Google Scholar] [CrossRef]
- Kawai, S.H.; Gilat, S.L.; Ponsinet, R.; Lehn, J.-M. A dual-mode molecular switching device: Bisphenolic diarylethenes with integrated photochromic and electrochromic properties. Chem. Eur. J. 1995, 1, 285–293. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, J. Photochromic Materials: Preparation, Properties and Applications; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Klaue, K.; Garmshausen, Y.; Hecht, S. Taking photochromism beyond visible: Direct one-photon nir photoswitches operating in the biological window. Angew. Chem. Int. Ed. 2018, 57, 1414–1417. [Google Scholar] [CrossRef]
- Lee, M.-H. Thermochromic glazing of windows with better luminous solar transmittance. Sol. Energy Mater. Sol. Cells 2002, 71, 537–540. [Google Scholar] [CrossRef]
- Seeboth, A.; Lotzsch, D. Thermochromic and Thermotropic Materials; Pan Stanford Publishing: Singapore, 2013. [Google Scholar]
- Lin, J.; Lai, M.; Dou, L.; Kley, C.S.; Chen, H.; Peng, F.; Sun, J.; Lu, D.; Hawks, S.A.; Xie, C.; et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Hao, Q.; Li, W.; Xu, H.; Wang, J.; Yin, Y.; Wang, H.; Ma, L.; Ma, F.; Jiang, X.; Schmidt, O.G.; et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 2018, 30, 1705421. [Google Scholar] [CrossRef]
- Smith, G.W. Cure parameters and phase behavior of an ultraviolet-cured polymer-dispersed liquid crystal. Mol. Cryst. Liq. Cryst. 1991, 196, 89–102. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Park, M.-K.; Park, J.-S.; Kim, H.-R. Enhanced adhesion and transmittance uniformity in laminated polymer-dispersed liquid crystal films. J. Opt. Soc. Korea 2014, 18, 753. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-W.; Baek, J.-M.; Heo, J.; Yoon, T.-H. Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film. Dyes Pigm. 2016, 134, 36–40. [Google Scholar] [CrossRef]
- Gutierrez-Cuevas, K.G.; Wang, L.; Zheng, Z.; Bisoyi, H.K.; Li, G.; Tan, L.-S.; Vaia, R.A.; Li, Q. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles. Angew. Chem. Int. Ed. 2016, 128, 13284. [Google Scholar] [CrossRef]
- Wang, L.; Bisoyi, H.K.; Zheng, Z.; Gutierrez-Cuevas, K.G.; Singh, G.; Kumar, S.; Bunning, T.J.; Li, Q. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater. Today 2017, 20, 230–237. [Google Scholar] [CrossRef]
- Li, Q. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kwon, S.-B.; Lee, S.-J.; Yoon, D.-S.; Yoo, H.-S.; Lee, B.-Y. Transmittance variable liquid crystal modes with a specific gray off-state for low power consumption smart windows. J. Mol. Liq. 2018, 267, 445–449. [Google Scholar] [CrossRef]
- Vergaz, R.; Sanchez-Pena, J.M.; Barrios, D.; Vazquez, C.; Contreras-Lallana, P. Modelling and electro-optical testing of suspended particle devices. Sol. Energy Mater. Sol. Cells 2008, 92, 1483. [Google Scholar] [CrossRef] [Green Version]
- Barrios, D.; Vergaz, R.; Sanchez-Pena, J.M.; Garcia-Camara, B.; Granqvist, C.G.; Niklasson, G.A. Simulation of the thickness dependence of the optical properties of suspended particle devices. Sol. Energy Mater. Sol. Cells 2015, 143, 613. [Google Scholar] [CrossRef]
- Zakirullin, R.S.; Letuta, S.N. A smart window for angular selective filtering solar radiation. Solar Energy 2015, 120, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Zakirullin, R.S. Chromogenic materials in smart windows for angular-selective filtering of solar radiation. Mater. Today Energy 2020, 17, 100476. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, S.-H.; Baek, J.-M.; Yoon, T.-H. Optical and thermal switching of liquid crystals for self-shading windows. Adv. Sustain. Syst. 2018, 2, 1700164. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, S.-H.; Yoon, T.-H. Thermal control of transmission property by phase transition in cholesteric liquid crystals. J. Mater. Chem. C 2018, 6, 6520–6525. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, S.-H.; Yoon, T.-H. Control of transmittance by thermally induced phase transition in guest–host liquid crystals. Adv. Sustain. Syst. 2018, 2, 1800066. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, S.-H.; Yoon, T.-H. Self-shading by optical or thermal control of transmittance with liquid crystals doped with push-pull azobenzene. Sol. Energy Mater. Sol. Cells 2018, 183, 146–150. [Google Scholar] [CrossRef]
- Huh, J.-W.; Seo, J.-H.; Oh, S.-W.; Kim, S.-H.; Yoon, T.-H. Tristate switching of a liquid-crystal cell among initial transparent, haze-free dark, and high-haze dark states. J. Mol. Liq. 2019, 281, 81–85. [Google Scholar] [CrossRef]
- Oh, S.-W.; Jeon, B.-G.; Choi, T.-H.; Do, S.-M.; Yoon, T.-H. Independent control of haze and total transmittance with a dye-doped liquid crystal phase-grating device. Appl. Opt. 2019, 58, 4315–4319. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.-J.; Choi, Y.-J.; Lim, S.-I.; Koo, J.; Yang, S.; Jung, D.; Kang, S.-W.; Jeong, K.-U. A single-step dual stabilization of smart window by the formation of liquid crystal physical gels and the construction of liquid crystal chambers. Adv. Opt. Mater. 2020, 30, 1906780. [Google Scholar] [CrossRef]
- Yöntem, A.O.; Li, J.; Chu, D. Imaging through a projection screen using bi-stable switchable diffusive photon sieves. Opt. Express. 2018, 26, 10162–10170. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, F.; Zhao, C.; Kwok, H.-S.; Schadt, M. Low-driving-voltage, polarizer-free, scattering-controllable liquid crystal device based on randomly patterned photo-alignment. Opt. Lett. 2020, 45, 3697–3700. [Google Scholar] [CrossRef]
- White, D.L.; Taylor, G.N. New absorptive mode reflective liquid-crystal display device. J. Appl. Phys. 1974, 45, 4718. [Google Scholar] [CrossRef]
- Uchida, T.; Katagishi, T.; Onodera, M.; Shibata, Y. Reflective multicolor liquid-crystal display. IEEE Trans. Electron. Devices 1986, 33, 1207–1211. [Google Scholar] [CrossRef]
- Li, C.-C.; Tseng, H.-Y.; Chen, C.-W.; Wang, C.-T.; Jau, H.-C.; Wu, Y.-C.; Hsu, W.-H.; Lin, T.-H. Versatile energy-saving smart glass based on tristable cholesteric liquid crystals. ACS Appl. Energy Mater. 2020, 3, 7601–7609. [Google Scholar] [CrossRef]
- Tseng, H.-Y.; Chang, L.-M.; Lin, K.-W.; Li, C.-C.; Lin, W.-H.; Wang, C.-T.; Lin, C.-W.; Liu, S.-H.; Lin, T.-H. Smart window with active-passive hybrid control. Materials 2020, 13, 4137. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, H.; Schenning, A.P.H.J.; Debije, M.G. Infrared regulating smart window based on organic materials. Adv. Energy Mater. 2017, 7, 1602209. [Google Scholar] [CrossRef]
- Huh, J.-W.; Yu, B.-H.; Heo, J.; Ji, S.-M.; Yoon, T.-H. Technologies for display application of liquid crystal light shutters. Mol. Cryst. Liq. Cryst. 2017, 664, 120. [Google Scholar] [CrossRef]
- Swinehart, D.F. The beer-lambert law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Scheffer, T.J. Optimized three-component dye mixtures for achromatic guest-host liquid-crystal displays. J. Appl. Phys. 1982, 53, 257. [Google Scholar] [CrossRef]
- Yeh, P.; Gu, C. Optics of Liquid Crystal Displays, 2nd ed.; Wiley: New York, NY, USA, 2010; p. 297. [Google Scholar]
- Nam, S.-M.; Oh, S.-W.; Kim, S.-H.; Huh, J.-W.; Lim, E.; Kim, J.; Yoon, T.-H. Parameter space design of a guest-host liquid crystal device for transmittance control. Crystals 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.-M.; Oh, S.-W.; Yoon, T.-H. Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals. Crystals 2021, 11, 131. https://doi.org/10.3390/cryst11020131
Ji S-M, Oh S-W, Yoon T-H. Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals. Crystals. 2021; 11(2):131. https://doi.org/10.3390/cryst11020131
Chicago/Turabian StyleJi, Seong-Min, Seung-Won Oh, and Tae-Hoon Yoon. 2021. "Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals" Crystals 11, no. 2: 131. https://doi.org/10.3390/cryst11020131
APA StyleJi, S. -M., Oh, S. -W., & Yoon, T. -H. (2021). Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals. Crystals, 11(2), 131. https://doi.org/10.3390/cryst11020131