The Effectiveness of the DIC as a Measurement System in SRG Shear Strengthened Reinforced Concrete Beams
Abstract
:1. Introduction
2. Experimental Setup and Integration of the DIC Technique
- Subset options: (i) subset radius = 60; (ii) subset spacing = 2.
- Iterative solver options: (i) diff norm = 10−6; (ii) iterations number = 50.
- Multithreading options: (i) number of threads = 1.
3. Experimental Program
Specimen Preparation and Material Properties
4. Results
4.1. Load Displacement Curve
4.2. Failure Mode
4.3. Evaluation of Damage Based on Digital Image Correlation
5. Conclusions
- All beam investigated failed in shear due to concrete crushing and debonding the strengthening system;
- The DIC measurements of the beam’s deflections at the loading point are in good agreement with those furnished by the LVDT;
- The DIC system revealed itself as being able to accurately detect the strain contours, providing useful information in terms of failure mechanisms and the strengthening system’s efficiency;
- The reinforced regions (SRG strips) have always shown the lower deformations values, while the higher values are detected on the un-reinforced concrete surfaces as well as at the interfaces with the strengthening system.
- Being a full-field strain measurement technique, the DIC provides evidence about the optimised position to install LVDTs for future tests with similar configurations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Libreros, J.H.; Sneed, L.; D’Antino, T.; Pellegrino, C. Behavior of RC beams strengthened in shear with FRP and FRCM composites. Eng. Struct. 2017, 150, 830–842. [Google Scholar] [CrossRef]
- Faleschini, F.; Gonzalez-Libreros, J.; Zanini, M.A.; Hofer, L.; Sneed, L.; Pellegrino, C. Repair of severely-damaged RC exterior beam-column joints with FRP and FRCM composites. Compos. Struct. 2019, 207, 352–363. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M.A. A new Fabric Reinforced Geopolymer Mortar (FRGM) with mechanical and energy benefits. Fibers 2020, 8, 49. [Google Scholar] [CrossRef]
- Selvaraju, S.; Ilaiyavel, S. Applications of composites in marine industry. J. Eng. Res. Stud. 2011, 2, 89–91. [Google Scholar]
- Cascardi, A.; Dell’Anna, R.; Micelli, F.; Lionetto, F.; Aiello, M.A.; Maffezzoli, A. Reversible techniques for FRP-confinement of masonry columns. Constr. Build. Mater. 2019, 225, 415–428. [Google Scholar] [CrossRef]
- Funari, M.F.; Spadea, S.; Fabbrocino, F.; Luciano, R. A moving interface finite element formulation to predict dynamic edge debonding in FRP-strengthened concrete beams in service conditions. Fibers 2020, 8, 42. [Google Scholar] [CrossRef]
- Ombres, L.; Verre, S. Analysis of the Behavior of FRCM Confined Clay Brick Masonry Columns. Fibers 2020, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Ombres, L.; Mancuso, N.; Mazzuca, S.; Verre, S. Bond between carbon fabric-reinforced cementitious matrix and masonry substrate. J. Mater. Civ. Eng. 2019, 31, 04018356. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Cascardi, A.; Balsamo, A.; Aiello, M.A. Uniaxial experimental tests on full-scale limestone masonry columns confined with glass and basalt FRCM systems. J. Compos. Constr. 2020, 24, 04020050. [Google Scholar] [CrossRef]
- Aiello, M.A.; Cascardi, A.; Ombres, L.; Verre, S. Confinement of Masonry Columns with the FRCM-System: Theoretical and Experimental Investigation. Infrastructures 2020, 5, 101. [Google Scholar] [CrossRef]
- De Santis, S.; Ceroni, F.; de Felice, G.; Fagone, M.; Ghiassi, B.; Kwiecień, A.; Lignola, G.P.; Morganti, M.; Santandrea, M.; Valluzzi, M.R. Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems. Compos. Part B 2017, 127, 100–120. [Google Scholar] [CrossRef]
- De Santis, S.; de Felice, G. Steel reinforced grout systems for the strengthening of masonry structures. Compos. Struct. 2015, 134, 533–548. [Google Scholar] [CrossRef]
- Thermou, G.E.; Katakalos, K.; Manos, G. Influence of the cross section shape on the behaviour of SRG-confined prismatic concrete specimens. Mater. Struct. 2016, 49, 869–887. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Ebead, U. Experimental and analytical study on strengthening of reinforced concrete T-beams in shear using steel reinforced grout (SRG). Compos. Part B 2019, 177, 107368. [Google Scholar] [CrossRef]
- Ombres, L.; Verre, S. Numerical Modeling Approaches of FRCMs/SRG Confined Masonry Columns. Front. Built Environ. 2019, 5, 143. [Google Scholar] [CrossRef] [Green Version]
- Thermou, G.; Papanikolaou, V.; Lioupis, C.; Hajirasouliha, I. Steel-Reinforced Grout (SRG) strengthening of shear-critical RC beams. Constr. Build. Mater. 2019, 216, 68–83. [Google Scholar] [CrossRef]
- Bruno, D.; Fabbrocino, F.; Funari, M.F.; Greco, F.; Lonetti, P.; Spadea, S. An experimental and numerical study to evaluate the crack path under mixed mode loading on pvc foams. In Proceedings of the Conference of the Italian Association of Theoretical and Applied Mechanics, Rome, Italy, 15–19 September 2019; Springer: Cham, Switzerland, 2019; pp. 378–388. [Google Scholar]
- Funari, M.F.; Greco, F.; Lonetti, P.; Spadea, S. A numerical model based on ALE formulation to predict crack propagation in sandwich structures. Frat. Ed Integrità Strutt. 2019, 13, 277–293. [Google Scholar] [CrossRef]
- Funari, M.F.; Spadea, S.; Lonetti, P.; Lourenço, P.B. On the elastic and mixed-mode fracture properties of PVC foam. Theor. Appl. Fract. Mech. 2021, 112. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Melo, J.; Rossetto, T.; Fabian, M.; McCague, C.; Stavrianaki, K.; Lishman, B.; Sargeant, B. Use of DIC and AE for monitoring effective strain and debonding in FRP and FRCM-retrofitted RC beams. J. Compos. Constr. 2017, 21, 04016057. [Google Scholar] [CrossRef]
- Marcinczak, D.; Trapko, T. DIC (Digital Image Correlation) method in the research of RC beams strengthened with PBO-FRCM materials. In Proceedings of the E3S Web of Conferences, Tashkent, Uzbekistan, 18–21 April 2019; Volume 97. [Google Scholar]
- Yang, X.; Gao, W.-Y.; Dai, J.-G.; Lu, Z.-D. Shear strengthening of RC beams with FRP grid-reinforced ECC matrix. Compos. Struct. 2020, 241, 112120. [Google Scholar] [CrossRef]
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-source 2D digital image correlation matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Ombres, L.; Verre, S. Shear Capacity of RC Beams Strengthened with Steel Reinforced Grout (SRG); ACI Italy Chapter: Milan, Italy, 2019. [Google Scholar]
- Verre, S. Three Dimensional Numerical Modeling of RC Beams Strengthened in Shear with Steel Reinforced Grout (SRG). In Proceedings of the 1st Fib Italy YMG Symposium on Concrete and Concrete Structures, Parma, Italy, 15 October 2019. [Google Scholar]
- KeraKoll SPA 2020. Available online: https://www.kerakoll.com/ (accessed on 11 December 2020).
- UNI EN 1015-11 Methods of Test for Mortar for Masonry–Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; 2007, UNI Milan, Italy. Available online: https://standards.iteh.ai/catalog/standards/cen/14596d4c-119b-4a78-94e1-3fe481a29bde/en-1015-11-2019 (accessed on 11 December 2020).
- CNR-DT 215: Istruzioni per la Progettazione, L’Esecuzione ed il Controllo di Interventi di Consolidamento Statico Mediante L’utilizzo di Compositi Fibrorinforzati a Matrice Inorganica; National Reserach Council: Rome, Italy, 2020.
- Ombres, L.; Verre, S. Experimental and Numerical Investigation on the Steel Reinforced Grout (SRG) Composite-to-Concrete Bond. J. Compos. Sci. 2020, 4, 182. [Google Scholar] [CrossRef]
- Bencardino, F.; Nisticò, M.; Verre, S. Experimental investigation and numerical analysis of bond behavior in SRG-strengthened masonry prisms using UHTSS and stainless-steel fibers. Fibers 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Cascardi, A.; Leone, M.; Aiello, M.A. Transversal joining of multi-leaf masonry through different types of connector: Experimental and theoretical investigation. Construct. Build. Mater. 2020, 265, 120733. [Google Scholar] [CrossRef]
Specimen | Pu (kN) | n | sf (mm) | wf (mm) | sf/wf (-) |
---|---|---|---|---|---|
B-Control | 79.80 | - | - | - | - |
B-C-2L | 143.42 | 2 | 100 | 100 | 1 |
B-D-2L-4S | 82.99 | 2 | 234 | 100 | 2.34 |
B-D-1L-3S | 83.96 | 1 | 350 | 100 | 3.50 |
B-D-2L-3S | 121.85 | 2 | 350 | 100 | 3.50 |
Specimen | Pu (kN) | δuDIC (mm) | δuLVDT (mm) | Error (%) |
---|---|---|---|---|
B-C-2l | 143.42 | 15.85 | 15.87 | 0.1% |
B-D-2L-4S | 82.99 | 9.10 | 9.50 | 4.0% |
B-D-1L-3S | 83.96 | 6.18 | 6.32 | 2.0% |
B-D-2L-3S | 121.85 | 13.45 | 12.95 | 4.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funari, M.F.; Verre, S. The Effectiveness of the DIC as a Measurement System in SRG Shear Strengthened Reinforced Concrete Beams. Crystals 2021, 11, 265. https://doi.org/10.3390/cryst11030265
Funari MF, Verre S. The Effectiveness of the DIC as a Measurement System in SRG Shear Strengthened Reinforced Concrete Beams. Crystals. 2021; 11(3):265. https://doi.org/10.3390/cryst11030265
Chicago/Turabian StyleFunari, Marco Francesco, and Salatore Verre. 2021. "The Effectiveness of the DIC as a Measurement System in SRG Shear Strengthened Reinforced Concrete Beams" Crystals 11, no. 3: 265. https://doi.org/10.3390/cryst11030265
APA StyleFunari, M. F., & Verre, S. (2021). The Effectiveness of the DIC as a Measurement System in SRG Shear Strengthened Reinforced Concrete Beams. Crystals, 11(3), 265. https://doi.org/10.3390/cryst11030265