Crystal Structure of Novel Terephthalate Salt of Antiarrhythmic Drug Disopyramide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Crystallization of DPA:TA Salt
2.2.1. Slow Evaporation Method
2.2.2. Slurry Method
2.3. Single-Crystal X-ray Diffraction
2.4. PXRD
2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
2.6. Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Measurements
3. Results and Discussion
3.1. Crystal Structure of DPA:TA Salt
3.2. Characterization of DPA:TA Salt
3.2.1. PXRD
3.2.2. FT-IR Spectrum
3.2.3. Thermal Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Berry, D.J.; Steed, J.W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Martins, I.C.B.; Sardo, M.; Santos, S.M.; Fernandes, A.; Antunes, A.; André, V.; Mafra, L.; Duarte, M.T. Packing Interactions and Physicochemical Properties of Novel Multicomponent Crystal Forms of the Anti-Inflammatory Azelaic Acid Studied by X-ray and Solid-State NMR. Cryst. Growth Des. 2015, 16, 154–166. [Google Scholar] [CrossRef]
- Corpinot, M.K.; Bučar, D.-K. A Practical Guide to the Design of Molecular Crystals. Cryst. Growth Des. 2018, 19, 1426–1453. [Google Scholar] [CrossRef] [Green Version]
- Desiraju, G.R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1989. [Google Scholar]
- Bezerra, B.P.; Pogoda, D.; Perry, M.L.; Vidal, L.M.T.; Zaworotko, M.J.; Ayala, A.P. Cocrystal Polymorphs and Solvates of the Anti-Trypanosoma cruzi Drug Benznidazole with Improved Dissolution Performance. Cryst. Growth Des. 2020, 20, 4707–4718. [Google Scholar] [CrossRef]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9, 2950–2967. [Google Scholar] [CrossRef] [Green Version]
- Yousef, M.A.E.; Vangala, V.R. Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Cryst. Growth Des. 2019, 19, 7420–7438. [Google Scholar] [CrossRef]
- Gunnam, A.; Nangia, A.K. High-Solubility Salts of the Multiple Sclerosis Drug Teriflunomide. Cryst. Growth Des. 2019, 19, 5407–5417. [Google Scholar] [CrossRef]
- Katz, M.J.; Meyer, C.E.; El-Etr, A.; Slodki, S.J. Clinical evaluation of a new anti-arrhythmic agent, SC-7031. Curr. Ther. Res. Clin. Exp. 1963, 5, 343–350. [Google Scholar] [PubMed]
- Gunning, S.R.; Freeman, M.; Stead, J.A. Polymorphism of disopyramide. J. Pharm Pharm. 1976, 28, 758–761. [Google Scholar] [CrossRef]
- Rizos, I.; Brachmann, J.; Lengfelder, W.; Schmitt, C.; von Olshausen, K.; Kubler, W.; Senges, J. Effects of intravenous disopyramide and quinidine on normal myocardium and on the characteristics of arrhythmias: Intraindividual comparison in patients with sustained ventricular tachycardia. Eur. Heart J. 1987, 8, 154–163. [Google Scholar] [CrossRef]
- Kim, S.Y.; Benowitz, N.L. Poisoning due to class IA antiarrhythmic drugs. Quinidine, procainamide and disopyramide. Drug Saf. 1990, 5, 393–420. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.R., Jr.; Nelson, W.L.; Mangion, M.; Hite, G.J.; Mokler, C.M.; Ruenitz, P.C. Resolution, absolute configuration, and antiarrhythmic properties of the enantiomers of disopyramide, 4-(diisopropylamino)-2-(2-pyridyl)-2-phenylbutyramide. J. Med. Chem. 1980, 23, 1044–1048. [Google Scholar] [CrossRef]
- Kawamura, T.; Hirayama, N. Crystal structure of α-diisopropylaminoethyl-α-phenylpyridine-2- acetamide phosphate, [C21H30N3O][H2PO4]. Z. Krist. New Cryst. Struct. 2011, 226, 479. [Google Scholar] [CrossRef]
- Higashi, T. Calculated Using ABSCOR: Empirical Absorption Correction Based on Fourier Series Approximation; Rigaku: The Woodland, TX, USA, 1994. [Google Scholar]
- Messerschmidt, A.; Schneider, M.; Huber, R. ABSCOR: A scaling and absorption correction program for the FAST area detector diffractometer. J. Appl. Crystallogr. 1990, 23, 436–439. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C Struct. Chem 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Elmas Kimyonok, A.B.; Ulutürk, M. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer. J. Energetic Mater. 2015, 34, 113–122. [Google Scholar] [CrossRef]
- Machado Cruz, R.; Boleslavska, T.; Beranek, J.; Tieger, E.; Twamley, B.; Santos-Martinez, M.J.; Dammer, O.; Tajber, L. Identification and Pharmaceutical Characterization of a New Itraconazole Terephthalic Acid Cocrystal. Pharmaceutics 2020, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-H.; Ge, S.-W.; Wang, W.; Sun, B.-W. Studies on the synthesis, structural characterization, Hirshfeld analysis and stability of apovincamine (API) and its co-crystal (terephthalic acid: Apovincamine=1:2). J. Mol. Struct. 2015, 1097, 87–97. [Google Scholar] [CrossRef] [Green Version]
Parameters | DPA:TA |
---|---|
Empirical formula | C29H35N3O5 |
Formula weight | 505.60 |
Temperature | 93(2) K |
Wavelength | 1.54187 Å |
Crystal system | Triclinic |
Space group | P-1 |
Unit cell dimensions | a = 8.6855(2) Å, α = 100.640(7) °. |
b = 9.7036(3) Å, β = 103.230(7) ° | |
c = 17.1705(4) Å, γ = 91.205(6) ° | |
Volume | 1381.48(8) Å3 |
Z, Z′ | 2.1 |
Density (calculated) | 1.215 g/cm3 |
Absorption coefficient | 0.676 mm−1 |
F (000) | 540.0 |
Crystal size | 0.460 × 0.420 × 0.220 mm3 |
Theta range for data collection | 4.647 to 68.224°. |
Index ranges | −10 ≤ h ≤ 10, −11 ≤ k ≤ 11, −20 ≤ l ≤ 20 |
Reflections collected | 16230 |
Independent reflections | 4955 [Rint = 0.0307, Rsigma = 0.0411] |
Completeness to theta = 67.687° | 98.1 % |
Absorption correction | Semi-empirical from equivalents |
Max. and min. transmission | 0.862 and 0.67 |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 4955/0/354 |
Goodness-of-fit on F2 | 1.078 |
Final R indices [I>2sigma(I)] | R1 = 0.0478, wR2 = 0.1280 |
R indices (all data) | R1 = 0.0555, wR2 = 0.1337 |
Δρmax, Δρmin | 0.32/−0.25e. Å−3 |
D-H···A | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) | Symmetry Codes |
---|---|---|---|---|---|
N2-H2A∙∙∙N1 | 0.934(19) | 2.076(18) | 2.783(3) | 131.4(16) | Intramolecular |
N2-H2B∙∙∙O1 | 0.88(2) | 2.00(2) | 2.876(2) | 176(2) | 2 − x, 1 − y, 1 − z |
N3-H3A∙∙∙O2 | 0.946(18) | 1.821(18) | 2.7617(18) | 172.5(17) | x, y, z |
O4-H4A∙∙∙O3 | 0.96(3) | 1.57(3) | 2.5211(18) | 176(2) | x, −1 + y, z |
C9-H9∙∙∙O3 | 0.95 | 2.58 | 3.389(2) | 143 | x, y, z |
C15-H15B∙∙∙O1 | 0.99 | 2.41 | 3.008(2) | 118 | Intramolecular |
C16-H16∙∙∙O3 | 1.00 | 2.50 | 3.499(2) | 176 | 1 + x, y, z |
C17-H17B∙∙∙O1 | 0.98 | 2.49 | 3.469(2) | 173 | Intramolecular |
C20-H20B∙∙∙O4 | 0.98 | 2.48 | 3.344(2) | 147 | x, 1 + y, z |
C21-H21C∙∙∙O5 | 0.98 | 2.57 | 3.478(2) | 154 | 1 + x, 1 + y, z |
C19-H19∙∙∙O2 | 1.00 | 2.609 | 3.2976(18) | 126.02 | 1 −x, 1 − y, −z |
C20-H20C∙∙∙O2 | 0.98 | 2.693 | 3.3375(19) | 123.65 | 1 − x, 1 − y, −z |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamboli, M.I.; Utusmi, Y.; Furuishi, T.; Fukuzawa, K.; Yonemochi, E. Crystal Structure of Novel Terephthalate Salt of Antiarrhythmic Drug Disopyramide. Crystals 2021, 11, 368. https://doi.org/10.3390/cryst11040368
Tamboli MI, Utusmi Y, Furuishi T, Fukuzawa K, Yonemochi E. Crystal Structure of Novel Terephthalate Salt of Antiarrhythmic Drug Disopyramide. Crystals. 2021; 11(4):368. https://doi.org/10.3390/cryst11040368
Chicago/Turabian StyleTamboli, Majid Ismail, Yohei Utusmi, Takayuki Furuishi, Kaori Fukuzawa, and Etsuo Yonemochi. 2021. "Crystal Structure of Novel Terephthalate Salt of Antiarrhythmic Drug Disopyramide" Crystals 11, no. 4: 368. https://doi.org/10.3390/cryst11040368
APA StyleTamboli, M. I., Utusmi, Y., Furuishi, T., Fukuzawa, K., & Yonemochi, E. (2021). Crystal Structure of Novel Terephthalate Salt of Antiarrhythmic Drug Disopyramide. Crystals, 11(4), 368. https://doi.org/10.3390/cryst11040368