High Thermal Stability of κ-Ga2O3 Grown by MOCVD
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, R.; Hill, V.G.; Osborn, E.F. Polymorphism of Ga2O3 and the System Ga2O3—H2O. J. Am. Chem. Soc. 1952, 74, 719–722. [Google Scholar] [CrossRef]
- Razeghi, M.; Park, J.H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.; Wu, J.; et al. A Review of the Growth, Doping, and Applications of β-Ga2O3 Thin Films. Proc. SPIE 2018, 10533, 105330R1-24. [Google Scholar]
- Zhou, H.; Zhang, J.; Zhang, C.; Feng, Q.; Zhao, S.; Ma, P.; Hao, Y. A review of the most recent progresses of state-of-art gallium oxide power devices. J. Semicond. 2019, 40, 011803. [Google Scholar] [CrossRef]
- Cora, I.; Mezzadri, F.; Boschi, F.; Bosi, M.; Čaplovičová, M.; Calestani, G.; Dódony, I.; Pécz, B.; Fornari, R. The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm 2017, 19, 1509–1516. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, V.; Stepanov, S.; Pechnikov, A.V.; Shapenkov, S.; Scheglov, M.; Chikiryaka, A.; Vyvenko, O.F. HVPE Growth and Characterization of ε-Ga2O3 Films on Various Substrates. ECS J. Solid State Sci. Technol. 2020, 9, 045014. [Google Scholar] [CrossRef]
- Anhar Uddin Bhuiyan, A.F.M.; Feng, Z.; Johnson, J.M.; Huang, H.L.; Hwang, J.; Zhao, H. MOCVD Epitaxy of ultrawide bandgap β-(AlxGa1−x)2O3 with high-Al composition on (100) β-Ga2O3 substrates. Cryst. Growth Des. 2020, 20, 6722–6730. [Google Scholar] [CrossRef]
- Hatipoglu, I.; Mukhopadhyay, P.; Alema, F.; Sakthivel, T.S.; Seal, S.; Osinsky, A.; Schoenfeld, W.V. Tuning the responsivity of monoclinic solar-blind photodetectors grown by metal organic chemical vapor deposition. J. Phys. D Appl. Phys. 2020, 53, 454001. [Google Scholar] [CrossRef]
- Bi, X.; Wu, Z.; Huang, Y.; Tang, W. Stabilization and enhanced energy gap by Mg doping in ε-phase Ga2O3 thin films. AIP Adv. 2018, 8, 025008. [Google Scholar] [CrossRef] [Green Version]
- Maccioni, M.B.; Fiorentini, V. Phase diagram and polarization of stable phases of (Ga1−xInx)2O3. Appl. Phys. Express 2016, 9, 041102. [Google Scholar] [CrossRef] [Green Version]
- Nishinaka, H.; Miyauchi, N.; Tahara, D.; Morimoto, S.; Yoshimoto, M. Incorporation of indium into ε-gallium oxide epitaxial thin films grown via mist chemical vapour deposition for bandgap engineering. CrystEngComm 2018, 20, 1882–1888. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; He, K.; Hu, X.; Dravid, V.; Razeghi, M. Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing. Photonics 2021, 8, 17. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings 2021, 11, 287. [Google Scholar] [CrossRef]
- Chen, Q.; Dapkus, P.D. On the Thermal Decomposition of Trimethylgallium—A Molecular Beam Sampling Mass Spectroscopy Study. J. Electrochem. Soc. 1991, 138, 2821. [Google Scholar] [CrossRef]
Structure | Components | TMGa | TMIn | H2O | SiH4 |
---|---|---|---|---|---|
Structure 1 | Ga2O3 [Reference] | 5 sccm (N2) | 0 sccm (N2) | 1600 sccm (N2) | 20 sccm (N2) |
Structure 2 | Superlattice [Ga2O3 (30 s)/In2O3 (1 min)] | 5 sccm (N2) | 70 sccm (N2) | 1600 sccm (N2) | 0 |
Structure 3 | Superlattice [Ga2O3 (30 s)/In2O3 (1 min)] | 5 sccm (N2) | 70 sccm (N2) | 1600 sccm (N2) | 20 sccm (N2) |
Before Annealing | After Annealing | |||
---|---|---|---|---|
Hall Mobility | Carrier Concentration | Hall Mobility | Carrier Concentration | |
Structure 1 | Highly resistive | Highly resistive | Highly resistive | Highly resistive |
Structure 2 | Highly resistive | Highly resistive | Highly resistive | Highly resistive |
Structure 3 | 2 cm2/V·s | 2 × 1017 cm−3 | 4 cm2/V·s | 4 × 1018 cm−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals 2021, 11, 446. https://doi.org/10.3390/cryst11040446
Lee J, Kim H, Gautam L, Razeghi M. High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals. 2021; 11(4):446. https://doi.org/10.3390/cryst11040446
Chicago/Turabian StyleLee, Junhee, Honghyuk Kim, Lakshay Gautam, and Manijeh Razeghi. 2021. "High Thermal Stability of κ-Ga2O3 Grown by MOCVD" Crystals 11, no. 4: 446. https://doi.org/10.3390/cryst11040446
APA StyleLee, J., Kim, H., Gautam, L., & Razeghi, M. (2021). High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals, 11(4), 446. https://doi.org/10.3390/cryst11040446