One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
3. Results
3.1. Effect of PVP and NH4HF2 Concentration on Etching Results in Ag@PVP-MACE
3.2. Effect of H2O2 Concentration on Etching Results in Ag@PVP–ACE
3.3. Effect of Temperature on Etching Results in Ag@PVP–ACE
3.4. Effect of Time on Etching Results in Ag@PVP–ACE
4. Discussion
4.1. Comparative Analysis of NSR and Ag@PVP–ACE Technology for Fabricating Inverted Pyramid
4.2. Comparative Analysis of the Optical Properties of Upright Pyramid and the Inverted Pyramid
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, L.; Liu, Y.; Mei, Z.; Chen, W.; Li, J.; Liang, H.; Kuznetsov, A.; Xiaolong, D. Maskless inverted pyramid texturization of silicon. Sci. Rep. 2015, 5, 10843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Lai, T.; Li, H.; Wang, Y.; Mei, Z.; Liang, H.; Li, Z.; Zhang, F.; Wang, W.; Kuznetsov, A.Y.; et al. Nanostructure formation and passivation of large-area black silicon for solar cell applications. Small 2012, 8, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, W.; Choi, J.; Ta, H.Q.; Bai, Y.; Chen, L.; Zhang, M.; Chen, Y.; Guan, Z.; Rummeli, M.H.; et al. Influence of bowl-like nanostructures on the efficiency and module power of black silicon solar cells. Sol. Energy 2019, 189, 67–73. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, R.; Tao, K.; Jiang, S.; Dai, X.; Sun, H.; Jin, Z.; Ji, Z.; Liu, X.; Zhao, C.; et al. The influence of Ag-ion concentration on the performance of mc-Si silicon solar cells textured by metal assisted chemical etching (MACE) method. Sol. Energy Mater. Sol. Cells 2019, 200, 109983. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Zhu, Y.; Guan, Z. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure. Nanoscale Res. Lett. 2018, 13, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrazkova, Z.; Sobkowicz, I.P.; Foldyna, M.; Postava, K.; Florea, I.; Pištora, J.; Roca i Cabarrocas, P. Optical properties and performance of pyramidal texture silicon heterojunction solar cells: Key role of vertex angles. Prog. Photovolt. Res. Appl. 2018, 26, 369–376. [Google Scholar] [CrossRef]
- Han, S.J.; Ghosh, S.; Abudayyeh, O.K.; Hoard, B.R.; Culler, E.C.; Bonilla, J.E.; Han, S.M.; Han, S.E. Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells. Opt. Express 2016, 24, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Guan, Z.; Liu, Y. Large-scale preparation of 22.06% efficiency single-crystalline silicon solar cells with inverted pyramid microstructure through nanostructure rebuilding treatment. Mater. Res. Express 2020, 7, 096203. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, A.; Green, M.A.; Ferrazza, F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Cacciato, A.; Duerinckx, F.; Baert, K.; Moors, M.; Caremans, T.; Leys, G.; De Keersmaecker, K.; Szlufcik, J. Investigating manufacturing options for industrial PERL-type Si solar cells. Sol. Energy Mater. Sol. Cells 2013, 113, 153–159. [Google Scholar] [CrossRef]
- Koynov, S.; Brandt, M.S.; Stutzmann, M. Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 2006, 88, 203107. [Google Scholar] [CrossRef]
- Kan, M.; Yan, Z.W.; Wang, X.; Hitt, J.L.; Xiao, L.; McNeill, J.M.; Wang, Y.; Zhao, Y.; Mallouk, T.E. 2-Aminobenzenethiol-Functionalized Silver-Decorated Nanoporous Silicon Photoelectrodes for Selective CO2 Reduction. Angew. Chem. Int. Ed. Engl. 2020, 59, 11462–11469. [Google Scholar] [CrossRef]
- Qin, Y.; Cui, Z.; Wen, Z.; Bai, Y. Highly sensitive NO2 sensors based on core-shell array of silicon nanowires/polypyrrole and new insight into gas sensing mechanism of organic/inorganic hetero-contact. Polym. Compos. 2019, 40, 3275–3284. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X. Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355. [Google Scholar] [CrossRef]
- Kumar, A.; Dhasmana, H.; Kumar, A.; Kumar, V.; Verma, A.; Jain, V.K. Highly sensitive MWCNTs/SiNWs hybrid nanostructured sensor fabricated on silicon-chip for alcohol vapors detection. Phys. E Low-Dimens. Syst. Nanostructures 2020, 127, 114538. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Yi, C.-Q.; Fan, X.; Peng, K.-Q.; Wong, N.-B.; Yang, M.-S.; Zhang, R.-Q.; Lee, S.-T. A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay. Appl. Phys. Lett. 2008, 92, 043116. [Google Scholar] [CrossRef]
- Boukai, A.I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.K.; Goddard, W.A.; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Hochbaum, A.I.; Chen, R.K.; Delgado, R.D.; Liang, W.J.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P.D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–165. [Google Scholar] [CrossRef]
- Cho, S.; Jung, W.; Jung, G.Y.; Eom, K. High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. J. Power Sources 2020, 454, 227931. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, H.J.; Jeong, J.H.; Lee, J.; Choi, J.H.; Jung, J.Y.; Lee, J.H.; Cheng, H.; Lee, K.W.; Choi, D.G. Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium-Ion Batteries. Adv. Eng. Mater. 2016, 18, 1349–1353. [Google Scholar] [CrossRef]
- Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358. [Google Scholar] [CrossRef]
- Song, Y.; Mohseni, P.K.; Kim, S.H.; Shin, J.C.; Ishihara, T.; Adesida, I.; Li, X. Ultra-High Aspect Ratio InP Junctionless FinFETs by a Novel Wet Etching Method. IEEE Electron. Device Lett. 2016, 37, 970–973. [Google Scholar] [CrossRef]
- Van Toan, N.; Toda, M.; Ono, T. High Aspect Ratio Silicon Structures Produced via Metal-Assisted Chemical Etching and Assembly Technology for Cantilever Fabrication. IEEE Trans. Nanotechnol. 2017, 16, 567–573. [Google Scholar] [CrossRef]
- Van Toan, N.; Wang, X.Y.; Inomata, N.; Toda, M.; Voiculescu, I.; Ono, T. Low Cost and High-Aspect Ratio Micro/Nano Device Fabrication by Using Innovative Metal-Assisted Chemical Etching Method. Adv. Eng. Mater. 2019, 21, 9. [Google Scholar] [CrossRef]
- Owen, J.; Hildreth, W.L.; Ching Ping, W. Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures. ACS Nano 2009, 3, 10. [Google Scholar]
- Lai, R.A.; Hymel, T.M.; Narasimhan, V.K.; Cui, Y. Schottky Barrier Catalysis Mechanism in Metal-Assisted Chemical Etching of Silicon. ACS Appl. Mater. Interfaces 2016, 8, 8875–8879. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, F.; Wu, H.; Liu, X.; Zheng, X.; Liu, S.; Wang, H.; Zhou, S.; Li, F. Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Adv. Funct. Mater. 2008, 18, 3026–3035. [Google Scholar]
- Wu, Y.; Gao, F.; Wu, H.; Liu, X.; Zheng, X.; Liu, S.; Wang, H.; Zhou, S.; Li, F. The effects of Ag particle morphology on the antireflective properties of silicon textured using Ag-assisted chemical etching. J. Alloy. Compd. 2016, 670, 156–160. [Google Scholar] [CrossRef]
- Pinna, E.; Le Gall, S.; Torralba, E.; Mula, G.; Cachet-Vivier, C.; Bastide, S. Mesopore Formation and Silicon Surface Nanostructuration by Metal-Assisted Chemical Etching With Silver Nanoparticles. Front. Chem. 2020, 8, 658. [Google Scholar] [CrossRef]
- Omer, A.-A.-A.; Yang, Y.; Sheng, G.; Li, S.; Yu, J.; Ma, W.; Qiu, J.; Kolaly, W.E. Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching. Silicon 2019, 12, 231–238. [Google Scholar] [CrossRef]
- Huang, J.C.; Sen, R.K.; Yeager, E. Oxygen Reduction on Platinum in 85% Orthophosphoric Acid. J. Electrochem. Soc. 2019, 12, 786–792. [Google Scholar] [CrossRef]
- Xiaohua Cai, K.K.; Gottjiried, K.; Christian, N.; Wolfgang, D.; Ogorevc, B. Electrocatalytic Reduction of Hydrogen Peroxide on a PalladiumModified Carbon Paste Electrode. Electronanalysis 1995, 4, 340–345. [Google Scholar]
- Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal. 2008, 253, 132–138. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, H.; Wang, J.; Sun, R.; Wu, L.; Liu, Y.; Xu, J.; Liu, J.; Peng, K.-Q. Carbon induced galvanic etching of silicon in aerated HF/H2O vapor. Corros. Sci. 2019, 157, 268–273. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Zhao, H.; Fu, H.; Wang, Y.; Huo, C.; Peng, K.Q. Oxidant Concentration Modulated Metal/Silicon Interface Electrical Field Mediates Metal-Assisted Chemical Etching of Silicon. Adv. Mater. Interfaces 2018, 5, 1801132. [Google Scholar] [CrossRef]
- Yang, W.; Shen, H.; Jiang, Y.; Tang, Q.; Raza, A.; Gao, K. Formation of Inverted Pyramid-Like Submicron Structures on Multicrystalline Silicon Using Nitric Acid as Oxidant in Metal Assisted Chemical Etching Process. Phys. Status Solidi A 2019, 216, 1800636. [Google Scholar] [CrossRef]
- Kolasinski, K.W.; Barclay, W.B. The stoichiometry of electroless silicon etching in solutions of V2O5 and HF. Angew. Chem. Int. Ed. Engl. 2013, 52, 6731–6734. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Honsberg, C. Sub-Wavelength Scale Si Inverted Pyramid Fabrication with Enhanced Size Control by Using Silica Sphere Lithography Technique. Appl. Sci. 2018, 8, 1720. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Y.; Chen, W.; Wu, J.; Chen, Q.; Tang, H.; Wang, Y.; Du, X. Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells. Solar Energy 2020, 201, 461–468. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Chen, Q.; Chen, W.; Yang, L.; Wang, Y.; He, M.; Du, X. The orientation and optical properties of inverted-pyramid-like structures on multi-crystalline silicon textured by Cu-assisted chemical etching. Solar Energy 2018, 171, 675–680. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Chen, W.; Zhao, Y.; Chen, Q.; Tang, H.; Wang, Y.; Du, X. Influence of different-sized inverted-pyramids of silicon texture by Ag manipulation on solar cell performance. Appl. Surf. Sci. 2020, 506, 144778. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, H.; Yao, H.; Gao, K.; Ge, J.; Liu, Y. Investigation of optical and mechanical performance of inverted pyramid based ultrathin flexible c-Si solar cell for potential application on curved surface. Appl. Surf. Sci. 2020, 504, 144588. [Google Scholar] [CrossRef]
- Brahiti, N.; Bouanik, S.-A.; Hadjersi, T. Metal-assisted electroless etching of silicon in aqueous NH4HF2 solution. Appl. Surf. Sci. 2012, 258, 5628–5637. [Google Scholar] [CrossRef]
- Koker, L.; Kolasinski, K.W. Laser-Assisted Formation of Porous Si in Diverse Fluoride Solutions: Reaction Kinetics and Mechanistic Implications. ACS J. Phys. Chem. B 2001, 8, 3864–3871. [Google Scholar] [CrossRef]
- Qi, X.; Balankura, T.; Zhou, Y.; Fichthorn, K.A. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes. Nano Lett. 2015, 15, 7711–7717. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Hu, C.; Chen, S.; Liu, X.; Liu, J.; Chen, F.; Chen, J.; Xie, F. A facile method in removal of PVP ligands from silver nanowires for high performance and reusable SERS substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117733. [Google Scholar] [CrossRef]
- Mao, H.; Feng, J.; Ma, X.; Wu, C.; Zhao, X. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanoparticle Res. 2012, 14, 1–5. [Google Scholar] [CrossRef]
- Abramova, E.N.; Khort, A.M.; Gvelesiani, A.A.; Yakovenko, A.G.; Shvets, V.I. A model of the mechanism of the chemical interaction of the etchant ion (HF2)– with silicon during its electrochemical etching in hydrofluoric acid solutions. Dokl. Chem. 2016, 470, 252–254. [Google Scholar] [CrossRef]
- Lee, J.; Wong, C.C.D.; Tung, C.Y.; Smith, W.L.; Hahn, S.; Arst, M. Gate oxide integrity and minority-carrier lifetime correlated with Si wafer polish damage. Appl. Phys. Lett. 1987, 51, 54–56. [Google Scholar] [CrossRef]
- Baker-Finch, S.C.; McIntosh, K.R. Reflection distributions of textured monocrystalline silicon: Implications for silicon solar cells. Prog. Photovolt. Res. Appl. 2012. [Google Scholar] [CrossRef]
- Baker-Finch, S.C.; McIntosh, K.R. Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. Res. Appl. 2011, 19, 406–416. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Wang, Y.; Chen, W.; Wu, J.; Zhao, Y.; Du, X. Optical properties of a random inverted pyramid textured silicon surface studied by the ray tracing method. Solar Energy 2019, 186, 392–397. [Google Scholar] [CrossRef]
Experiment Parameters | Range |
---|---|
NH4HF2 | 0.175–1.75 M |
H2O2 | 0.3–1.5 M |
PVP | 0.1–1.5 wt% |
Temperature | 45–75 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Dong, K.; Bian, L.; Guan, Z. One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP). Crystals 2021, 11, 459. https://doi.org/10.3390/cryst11050459
Liu Y, Dong K, Bian L, Guan Z. One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP). Crystals. 2021; 11(5):459. https://doi.org/10.3390/cryst11050459
Chicago/Turabian StyleLiu, Yuchen, Kousuo Dong, Linsheng Bian, and Zisheng Guan. 2021. "One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP)" Crystals 11, no. 5: 459. https://doi.org/10.3390/cryst11050459
APA StyleLiu, Y., Dong, K., Bian, L., & Guan, Z. (2021). One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP). Crystals, 11(5), 459. https://doi.org/10.3390/cryst11050459