Influence of Doping on the Transport Properties of Y1−xLnxMnO3+δ (Ln: Pr, Nd)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure and Phase Composition after Sintering
3.2. Oxygen Content—Thermogravimetric Analyses
3.3. Electrical Conductivity Measurements
3.4. Thermoelectric power of Y0.95Pr0.05MnO3+δ
3.5. Stability of Y0.95Pr0.05MnO3+δ vs. Solid Electrolytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biswas, T.; Jain, M. Quasiparticle band structure and optical properties of hexagonal-YMnO3. J. Appl. Phys. 2016, 120. [Google Scholar] [CrossRef] [Green Version]
- Cheong, S.W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertaut, E.F.; Mercier, M. Structure Magnetique de MnYO3. Phys. Lett. 1963, 5, 27. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, Y.; Sun, Y.; Xue, Y.; Chu, C. Coupling between the ferroelectric and antiferromagnetic orders. Phys. Rev. B Condens. Matter Mater. Phys. 1997, 56, 2623–2626. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Fröhlich, D.; Goltsev, A.V.; Pisarev, R.V. Observation of coupled magnetic and electric domains. Nature 2002, 419, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Pirogov, A.; Han, J.H.; Park, J.G.; Hoshikawa, A.; Kamiyama, T. Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 71, 1–4. [Google Scholar] [CrossRef]
- Lima, A.F.; Lalic, M.V. Optical absorption spectrum and electronic structure of multiferroic hexagonal YMnO 3 compound. Opt. Mater. (Amst). 2017, 64, 406–412. [Google Scholar] [CrossRef]
- Van Aken, B.B.; Meetsma, A.; Palstra, T.T.M. Hexagonal YbMnO 3 revisited. Acta Crystallogr. Sect. E Struct. Reports Online 2001, 57, i87–i89. [Google Scholar] [CrossRef] [Green Version]
- Van Aken, B.B.; Palstra, T.T.M.; Filippetti, A.; Spaldin, N.A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 2004, 3, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, A.S.; Knight, K.S.; Lightfoot, P. High-temperature phase transitions of hexagonal YMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Świerczek, K.; Klimkowicz, A.; Nishihara, K.; Kobayashi, S.; Takasaki, A.; Alanizy, M.; Kolesnik, S.; Dabrowski, B.; Seong, S.; Kang, J. Oxygen storage properties of hexagonal HoMnO3+: δ. Phys. Chem. Chem. Phys. 2017, 19, 19243–19251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remsen, S.; Dabrowski, B. Synthesis and oxygen storage capacities of hexagonal Dy1-x Yx Mn O3+d. Chem. Mater. 2011, 23, 3818–3827. [Google Scholar] [CrossRef]
- Remsen, S.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Szewczyk, A. Synthesis and oxygen content dependent properties of hexagonal DyMnO 3+δ. J. Solid State Chem. 2011, 184, 2306–2314. [Google Scholar] [CrossRef]
- Klimkowicz, A.; Świerczek, K.; Kobayashi, S.; Takasaki, A.; Allahyani, W.; Dabrowski, B. Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications. J. Solid State Chem. 2018, 258, 471–476. [Google Scholar] [CrossRef]
- Abughayada, C.; Dabrowski, B.; Kolesnik, S.; Brown, D.E.; Chmaissem, O. Characterization of Oxygen Storage and Structural Properties of Oxygen-Loaded Hexagonal R MnO 3+δ (R = Ho, Er, and Y). Chem. Mater. 2015, 27, 6259–6267. [Google Scholar] [CrossRef]
- Motohashi, T.; Ueda, T.; Masubuchi, Y.; Takiguchi, M.; Setoyama, T.; Oshima, K.; Kikkawa, S. Remarkable Oxygen Intake/Release Capability of BaYMn 2 O 5+δ: Applications to Oxygen Storage Technologies. Chem. Mater. 2010, 22, 3192–3196. [Google Scholar] [CrossRef]
- Motohashi, T.; Hirano, Y.; Masubuchi, Y.; Oshima, K.; Setoyama, T.; Kikkawa, S. Oxygen Storage Capability of Brownmillerite-type Ca 2 AlMnO 5+δ and Its Application to Oxygen Enrichment. Chem. Mater. 2013, 25, 372–377. [Google Scholar] [CrossRef]
- Parkkima, O.; Yamauchi, H.; Karppinen, M. Oxygen Storage Capacity and Phase Stability of Variously Substituted YBaCo 4 O 7+δ. Chem. Mater. 2013, 25, 599–604. [Google Scholar] [CrossRef]
- Motohashi, T.; Ueda, T.; Masubuchi, Y.; Kikkawa, S. Oxygen Intake/Release Mechanism of Double-Perovskite Type BaYMn 2 O 5+ δ (0 ≤ δ ≤ 1). J. Phys. Chem. C 2013, 117, 12560–12566. [Google Scholar] [CrossRef]
- Karppinen, M.; Yamauchi, H.; Otani, S.; Fujita, T.; Motohashi, T.; Huang, Y.-H.; Valkeapää, M.; Fjellvåg, H. Oxygen Nonstoichiometry in YBaCo 4 O 7+ δ: Large Low-Temperature Oxygen Absorption/Desorption Capability. Chem. Mater. 2006, 18, 490–494. [Google Scholar] [CrossRef]
- Machida, M.; Kawamura, K.; Ito, K.; Ikeue, K. Large-Capacity Oxygen Storage by Lanthanide Oxysulfate/Oxysulfide Systems. Chem. Mater. 2005, 17, 1487–1492. [Google Scholar] [CrossRef]
- Readman, J.E.; Olafsen, A.; Larring, Y.; Blom, R. La0.8Sr0.2Co0.2Fe0.8O3–δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. J. Mater. Chem. 2005, 15, 1931. [Google Scholar] [CrossRef]
- Klimkowicz, A.; Cichy, K.; Chmaissem, O.; Dabrowski, B.; Poudel, B.; Świerczek, K.; Taddei, K.M.; Takasaki, A. Reversible oxygen intercalation in hexagonal Y 0.7 Tb 0.3 MnO 3+: δ: Toward oxygen production by temperature-swing absorption in air. J. Mater. Chem. A 2019, 7, 2608–2618. [Google Scholar] [CrossRef]
- Cichy, K.; Świerczek, K.; Jarosz, K.; Klimkowicz, A.; Marzec, M.; Gajewska, M.; Dabrowski, B. Towards efficient oxygen separation from air: Influence of the mean rare-earth radius on thermodynamics and kinetics of reactivity with oxygen in hexagonal Y1-xRxMnO3+δ. Acta Mater. 2021, 205. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.C.; Dreele, R.B. Generalized Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748 2000. [Google Scholar]
- Ordóñez-Miranda, J.; Alvarado-Gil, J.J.; Medina-Ezquivel, R. Generalized Bruggeman Formula for the Effective Thermal Conductivity of Particulate Composites with an Interface Layer. Int. J. Thermophys. 2010, 31, 975–986. [Google Scholar] [CrossRef]
- Stroud, D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 1975, 12, 3368–3373. [Google Scholar] [CrossRef]
- Asakura, Y.; Miyake, A.; Otomo, M.; Yin, S. Improvement of the O 2 storage/release rate of YMnO 3 nanoparticles synthesized by the polymerized complex method. Dalt. Trans. 2020, 49, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Parkkima, O.; Malo, S.; Hervieu, M.; Rautama, E.L.; Karppinen, M. New RMnO3+δ (R=Y, Ho; δ≈0.35) phases with modulated structure. J. Solid State Chem. 2015, 221, 109–115. [Google Scholar] [CrossRef]
- Nishiyama, S.; Asako, I.; Iwadate, Y.; Hattori, T. Preparation of Y(Mn1−xFex)O3 and Electrical Properties of the Sintered Bodies. Open J. Inorg. Chem. 2015, 5, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Abughayada, C.; Dabrowski, B.; Avdeev, M.; Kolesnik, S.; Remsen, S.; Chmaissem, O. Structural, magnetic, and oxygen storage properties of hexagonal Dy 1-xYxMnO3+δ. J. Solid State Chem. 2014, 217, 127–135. [Google Scholar] [CrossRef]
- Ziman, J.M. Principles of the Theory of Solids; Cambridge University Press: Cambridge, UK, 1972; ISBN 9780521297332. [Google Scholar]
- Peña-Martínez, J.; Marrero-López, D.; Ruiz-Morales, J.C.; Núñez, P.; Sánchez-Bautista, C.; Dos Santos-García, A.J.; Canales-Vázquez, J. On Ba0.5Sr0.5Co1−yFeyO3−δ (y=0.1–0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85 based IT-SOFCs. Int. J. Hydrogen Energy 2009, 34, 9486–9495. [Google Scholar] [CrossRef]
- Chen, D.; Ran, R.; Zhang, K.; Wang, J.; Shao, Z. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J. Power Sources 2009, 188, 96–105. [Google Scholar] [CrossRef]
- Olszewska, A.; Du, Z.; Świerczek, K.; Zhao, H.; Dabrowski, B. Novel ReBaCo 1.5 Mn 0.5 O 5+δ (Re: La, Pr, Nd, Sm, Gd and Y) perovskite oxide: Influence of manganese doping on the crystal structure, oxygen nonstoichiometry, thermal expansion, transport properties, and application as a cathode material in solid oxide f. J. Mater. Chem. A 2018, 6, 13271–13285. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsuda, H.; Takita, Y. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. J. Am. Chem. Soc. 1994, 116, 3801–3803. [Google Scholar] [CrossRef]
- Raghvendra; Singh, R.K.; Singh, P. Electrical conductivity of barium substituted LSGM electrolyte materials for IT-SOFC. Solid State Ionics 2014, 262, 428–432. [Google Scholar] [CrossRef]
Chemical Formula | Space Group | Unit Cell Parameters [Å] and Volume [Å3] | Theoretical [g cm−3] and Relative Density [%] | Refinement Goodness |
---|---|---|---|---|
YMnO3+δ | P63cm (Hex0) | a = 6.1447(1) c = 11.3830(2) V = 372.22(1) | ρXRD = 5.135 ρREL = 79.5 | Rwp = 3.50% Rp = 2.36% chi2 = 3.003 |
Y0.95Nd0.05MnO3+δ (Nd005) | P63cm (Hex0) | a = 6.1568(1) c = 11.3819(2) V = 373.64(1) | ρXRD = 5.189 ρREL = 80.0 | Rwp = 3.40% Rp = 2.33% chi2 = 2.792 |
Y0.95Pr0.05MnO3+δ (Pr005) | P63cm (Hex0) | a = 6.1582(1) c = 11.3826(2) V = 373.84(1) | ρXRD = 5.182 ρREL = 82.1 | Rwp = 3.40% Rp = 2.35% chi2 = 2.731 |
Chemical Formula | Atmosphere | δ, Pellets | δ, Powders |
---|---|---|---|
YMnO3+δ | O2 | 0.006 | 0.23 |
air | 0.003 | 0.05 | |
Nd005 | O2 | 0.029 | - |
air | 0.010 | - | |
Pr005 | O2 | 0.042 | 0.31 |
air | 0.015 | 0.30 |
Atmosphere | Temperature Range [°C] | ||
---|---|---|---|
Activation Energy, Ea [eV] | |||
O2 | 700–1000 | 300–400 | 50–200 |
0.83(1) | 0.05(1) | 0.47(1) | |
air | 700–1000 | 300–400 | 50–200 |
0.86(1) | 0.15(1) | 0.54(1) | |
Ar | 400–1000 | 300–400 | 150–300 |
0.90(1) | 0.72(1) | 0.69(1) |
Resistance in the | Temperature Range [°C] | ||
---|---|---|---|
Equivalent Circuit | Activation Energy, Ea-CELL [eV] | ||
R1 | 562–900 | 388–562 | 287–352 |
0.55 | 0.86 | 0.22 | |
R2 | 700–900 | 507–650 | 388–479 |
1.96 | 0.34 | 0.70 | |
R2a | - | 388–479 | 259–352 |
- | 2.10 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichy, K.; Świerczek, K. Influence of Doping on the Transport Properties of Y1−xLnxMnO3+δ (Ln: Pr, Nd). Crystals 2021, 11, 510. https://doi.org/10.3390/cryst11050510
Cichy K, Świerczek K. Influence of Doping on the Transport Properties of Y1−xLnxMnO3+δ (Ln: Pr, Nd). Crystals. 2021; 11(5):510. https://doi.org/10.3390/cryst11050510
Chicago/Turabian StyleCichy, Kacper, and Konrad Świerczek. 2021. "Influence of Doping on the Transport Properties of Y1−xLnxMnO3+δ (Ln: Pr, Nd)" Crystals 11, no. 5: 510. https://doi.org/10.3390/cryst11050510
APA StyleCichy, K., & Świerczek, K. (2021). Influence of Doping on the Transport Properties of Y1−xLnxMnO3+δ (Ln: Pr, Nd). Crystals, 11(5), 510. https://doi.org/10.3390/cryst11050510