Surface Enhanced Infrared Absorption Studies of SiO2–TiO2–Ag Nanofibers: Effect of Silver Electrodeposition Time on the Amplification of Signals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Signal Amplification in Infrared Spectroscopy
3.2. Evaluation of Signal Amplification in Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ataka, K.; Stripp, S.T.; Heberle, J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. BBA Biomembr. 2013, 1828, 2283–2293. [Google Scholar] [CrossRef] [Green Version]
- Glassford, S.E.; Byrne, B.; Kazarian, S.G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. BBA Proteins Proteom. 2013, 1834, 2849–2858. [Google Scholar] [CrossRef] [Green Version]
- Roque-Ruiz, J.H.; Martínez-Máynez, H.; Zalapa-Garibay, M.A.; Arizmendi-Moraquecho, A.; Farias, R.; Reyes-López, S.Y. Surface enhanced Raman spectroscopy in nanofibers mats of SiO2–TiO2–Ag. Results Phys. 2017, 7, 2520–2527. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Yang, J.; Lv, X.; Wang, T. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection. Appl. Surf. Sci. 2015, 359, 853–859. [Google Scholar] [CrossRef]
- Ling, Y.; Zhuo, Y.; Huang, L.; Mao, D. Using Ag-embedded TiO2 nanotubes array as recyclable SERS substrate. Appl. Surf. Sci. 2016, 388, 169–173. [Google Scholar] [CrossRef]
- Ghosh, H.; Bürgi, T. Mapping Infrared Enhancement around Gold Nanoparticles Using Polyelectrolytes. J. Phys. Chem. C 2017, 121, 2355–2363. [Google Scholar] [CrossRef]
- Stroyuk, O.L.; Dzhagan, V.M.; Kozytskiy, A.V.; Breslavskiy, A.Y.; Kuchmiy, S.Y.; Villabona, A.; Zahn, D.R.T. Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania. Mater. Sci. Semicond. Process. 2015, 37, 3–8. [Google Scholar] [CrossRef]
- Li, Y.; Dykes, J.; Chopra, N. Silicon nanowire-gold nanoparticle heterostructures for Surface-enhanced Raman Spectroscopy. Nano-Struct. Nano-Objects 2016, 7, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Ferchichi, A.; Laariedh, F.; Sow, I.; Gourgon, C.; Boussey, J. Fabrication of disposable flexible SERS substrates by nanoimprint. Microelectron. Eng. 2015, 140, 52–55. [Google Scholar] [CrossRef]
- Cong, S.; Yuan, Y.; Chen, Z.; Hou, J.; Yang, M.; Su, Y.; Zhang, Y.; Li, L.; Li, Q.; Geng, F.; et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800. [Google Scholar] [CrossRef]
- Zhu, H.; Lan, Y.; Gao, X.; Ringer, S.; Zheng, Z.; Song, D.; Zhao, J. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 2005, 127, 6730–6736. [Google Scholar] [CrossRef]
- Fang, J.; Ding, B.; Song, X.; Han, Y. How a silver dendritic mesocrystal converts to a single crystal. Appl. Phys. Lett. 2008, 92, 10–13. [Google Scholar] [CrossRef]
- Li, M.; Qiu, Y.; Fan, C.; Cui, K.; Zhang, Y.; Xiao, Z. Design of SERS nanoprobes for Raman imaging: Materials, critical factors and architectures. Acta Pharm. Sin. B 2018, 8, 381–389. [Google Scholar] [CrossRef]
- López-Esparza, J.; Espinoza-Cristóbal, L.F.; Donohué-Cornejo, A.; Reyes-López, S.Y. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind. Eng. Chem. Res. 2016, 55, 12532–12538. [Google Scholar] [CrossRef]
- Muñoz-Escobar, A.; Ruíz-Baltazar, Á.J.; Reyes-López, S.Y. Novel Route of Synthesis of PCL-CuONPs Composites with Antimicrobial Properties. Dose-Response 2019, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560. [Google Scholar] [CrossRef]
- Garibay-Alvarado, J.A.; Espinosa-Cristóbal, L.F.; Reyes-López, S.Y. Fibrous silica-hydroxyapatite composite by electrospinning. Int. J. Res. Granthaalayah 2017, 5, 39–47. [Google Scholar] [CrossRef]
- Roque-Ruiz, J.H.; Medellín-Castillo, N.A.; Reyes-López, S.Y. Fabrication of α-alumina fibers by sol-gel and electrospinning of aluminum nitrate precursor solutions. Results Phys. 2018, 12, 193–204. [Google Scholar] [CrossRef]
- Roque-Ruiz, J.H.; Meraz-Angel, J.; Farias, R.; Meléndez-Lira, M.; Reyes-López, S.Y. Sol-Gel Synthesis of Strontium Titanate Nanofibers by Electrospinning. J. Ceram. Sci. Technol. 2019, 10, 29–38. [Google Scholar] [CrossRef]
- Grochowska, K.; Siuzdak, K.; Sokołowski, M.; Karczewski, J.; Szkoda, M.; Śliwiński, G. Properties of ordered titanium templates covered with Au thin films for SERS applications. Appl. Surf. Sci. 2015, 388, 716–722. [Google Scholar] [CrossRef]
- Yang, T.; Han, Y.; Li, J. Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 2015, 138, 457–464. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.M.; Abdelghany, A.M.; Badr, S.I.; Morsi, M.A. Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 2017, 7, 419–431. [Google Scholar] [CrossRef]
- Moskovits, M.; Suh, J.S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 1984, 88, 5526–5530. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Allen, N.S.; Mahdjoub, N.; Vishnyakov, V.; Kelly, P.J.; Roelof, J. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. 2018, 150, 31–36. [Google Scholar] [CrossRef]
- Chang, W.; Yan, L.; Liu, B.; Sun, R. Photocatalyic activity of double pore structure TiO2/SiO2 monoliths. Ceram. Int. 2017, 43, 5881–5886. [Google Scholar] [CrossRef]
- Henderson, M.; Gibaud, A.; Bardeau, J.F.; White, J. An X-ray reflectivity study of evaporation-induced self-assembled titania-based films. J. Mater. Chem. 2006, 16, 2478–2484. [Google Scholar] [CrossRef]
- Yasnikov, I.S.; Tsybuskina, I.I. Morphology of Silver Single Crystals Obtained by Electrodeposition. Tech. Phys. 2008, 53, 1515–1518. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Sathe, V.G.; Umadevi, M. SERS Activities of Green Synthesized Silver Nanoparticles. J. Clust. Sci. 2015, 26, 1451–1461. [Google Scholar] [CrossRef]
- Soto-Nieto, F.; Farías, R.; Reyes-López, S.Y. Sol–Gel and Electrospinning Synthesis of Silica–Hydroxyapatite–Silver Nanofibers for SEIRAS and SERS. Coatings 2020, 10, 910. [Google Scholar] [CrossRef]
- Wilson, E.B., Jr. The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. Phys. Rev. 1934, 45, 706. [Google Scholar] [CrossRef]
Wavelength (cm−1) | Band |
---|---|
3078 | 20a, 20b |
3033 | 2 |
3023 | 2 |
1580 | 8a |
1482 | 19a |
1435 | 19b |
1213 | 3 |
1147 | 15 |
1068 | 18b |
1029 | 12 |
988 | 1 |
746 | 10a |
701 | 10b |
676 | 4 |
603 | 6a |
406 | 16a |
Band (cm−1) | Py | 5 mM | 10 mM | 20 mM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 5 min | 10 min | 1 min | 2 min | 5 min | 10 min | 1 min | 2 min | 5 min | 10 min | ||
3301 | 40.61 ± 3.21 | 79.05± 12.62 | 97.63 ± 10.04 | 77.78 ± 5.26 | 75.71 ± 5.26 | 65.76 ± 2.96 | 74.56 ± 14.33 | 105.73 ± 0.74 | 111.23 ± 29.25 | 62.23 ± 13.57 | 83.67 ± 2.46 | 85.65 ± 9.82 | 91.95 ± 10.88 |
1636 | 14.68 ± 1.53 | 28.93 ± 6.71 | 32.35 ± 3.36 | 34.1 ± 12.92 | 24.81 ± 1.68 | 20.68 ± 0.62 | 28.38 ± 0.29 | 32.55 ± 4.99 | 36.28 ± 9.35 | 20.90 ± 4.39 | 30.56 ± 3.16 | 31.82 ± 3.72 | 32.61 ± 3.12 |
Band (cm−1) | 5 mM | 10 mM | 20 mM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 5 min | 10 min | 1 min | 2 min | 5 min | 10 min | 1 min | 2 min | 5 min | 10 min | |
3301 | 1.95 | 2.40 | 1.91 | 1.86 | 1.62 | 1.84 | 2.60 | 2.74 | 1.53 | 2.06 | 2.11 | 2.26 |
1636 | 1.97 | 2.20 | 2.32 | 1.69 | 1.41 | 1.93 | 2.22 | 2.47 | 1.42 | 2.08 | 2.17 | 2.22 |
Band (cm−1) | Support | Vibrational Modes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AgNO3 5 mM Time (min) | AgNO3 5 mM Time (min) | AgNO3 5 mM Time (min) | |||||||||||
1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 | ||
1634 | - | X | X | X | X | X | X | X | X | X | X | - | 18b |
1589 | - | X | X | X | X | X | X | X | X | X | X | - | 8a + 8b |
1531 | - | X | X | X | X | X | X | X | X | X | X | - | 6a |
1466 | - | X | X | X | X | X | X | X | X | X | X | - | 19a |
1408 | - | X | X | X | X | X | X | X | X | X | X | - | 19b |
1363 | - | X | X | X | X | X | X | X | X | X | X | - | 10a |
1292 | - | X | X | X | X | X | X | X | X | X | X | - | 6a + 10a |
1240 | - | X | X | X | X | X | X | X | X | X | X | - | 3 |
981 | - | X | X | X | X | X | X | X | X | X | X | - | 1 |
923 | - | X | X | X | X | X | X | X | X | X | X | - | 5 |
826 | - | X | X | X | X | X | X | X | X | X | X | - | 16b |
755 | - | X | X | X | X | X | X | X | X | X | X | - | 10a |
703 | - | X | X | X | X | X | X | X | X | X | X | - | 16a |
645 | X | X | X | X | X | X | X | X | X | X | X | X | Eg |
522 | X | X | X | X | X | X | X | X | X | X | X | X | A1g y B1g |
406 | X | X | X | X | X | X | X | X | X | X | X | X | B1g |
148 | X | X | X | X | X | X | X | X | X | X | X | X | Eg |
Band (cm−1) | Support | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AgNO3 5 mM Time (min) | AgNO3 10 mM Time (min) | AgNO3 20 mM Time (min) | ||||||||||
1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 | 1 | 2 | 5 | 10 | |
1634 | - | 12.54 | 10.43 | 3.62 | 3.71 | 1.32 | 2.50 | 5.39 | 8.22 | 8.62 | 3.52 | - |
1589 | - | 23.80 | 27.03 | 8.15 | 7.73 | 2.72 | 2.84 | 11.20 | 20.02 | 20.28 | 6.89 | - |
1531 | - | 24.76 | 21.97 | 7.27 | 7.05 | 2.58 | 3.18 | 10.39 | 17.49 | 15.94 | 6.71 | - |
1466 | - | 17.95 | 20.97 | 5.46 | 6.66 | 2.14 | 4.50 | 8.74 | 13.29 | 14.38 | 6.46 | - |
1408 | - | 20.75 | 23.48 | 5.26 | 6.85 | 2.10 | 4.00 | 8.46 | 14.19 | 15.97 | 6.64 | - |
1363 | - | 23.49 | 25.97 | 6.41 | 7.27 | 2.30 | 3.92 | 9.02 | 16.34 | 19.22 | 6.62 | - |
1292 | - | 17.96 | 19.36 | 5.42 | 7.07 | 2.17 | 4.04 | 7.94 | 13.71 | 13.44 | 5.75 | - |
1249 | - | 15.59 | 17.39 | 5.09 | 5.85 | 2.07 | 3.99 | 7.43 | 10.36 | 11.15 | 5.15 | - |
Band (cm−1) | Amplification Factor | Vibrational Modes |
---|---|---|
1597 | 25.26 | (C–C) υs (Ring) |
1547 | 18.12 | (Cring–N) υs |
1423 | 16.45 | (Ccenter–C) υs |
1359 | 17.13 | (C–H) δ (Ring) |
1190 | 12.76 | (C–C) υs (Ring) |
929 | 10.81 | (C–H) γ (Ring) |
810 | 9.77 | (C–H) γ (Ring) |
778 | 9.23 | (C–N–C) δ |
513 | 10.54 | (C–H) γ (Ring) |
456 | 7.73 | (C–CCenter–C) δ |
326 | 7.80 | (C–C) υs (Ring) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabello-Ribota, B.S.; Farías, R.; Reyes-López, S.Y. Surface Enhanced Infrared Absorption Studies of SiO2–TiO2–Ag Nanofibers: Effect of Silver Electrodeposition Time on the Amplification of Signals. Crystals 2021, 11, 563. https://doi.org/10.3390/cryst11050563
Cabello-Ribota BS, Farías R, Reyes-López SY. Surface Enhanced Infrared Absorption Studies of SiO2–TiO2–Ag Nanofibers: Effect of Silver Electrodeposition Time on the Amplification of Signals. Crystals. 2021; 11(5):563. https://doi.org/10.3390/cryst11050563
Chicago/Turabian StyleCabello-Ribota, Blanca Selenis, Rurik Farías, and Simón Yobanny Reyes-López. 2021. "Surface Enhanced Infrared Absorption Studies of SiO2–TiO2–Ag Nanofibers: Effect of Silver Electrodeposition Time on the Amplification of Signals" Crystals 11, no. 5: 563. https://doi.org/10.3390/cryst11050563
APA StyleCabello-Ribota, B. S., Farías, R., & Reyes-López, S. Y. (2021). Surface Enhanced Infrared Absorption Studies of SiO2–TiO2–Ag Nanofibers: Effect of Silver Electrodeposition Time on the Amplification of Signals. Crystals, 11(5), 563. https://doi.org/10.3390/cryst11050563