Determination of New IR and UV/VIS Spectroscopic Parameters of the C84-D2:22 Isomer for Its Quantitative Assessment, Identification and Possible Applications
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180–1182. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Iglesiasgroth, S.; Acosta-Pulido, J.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.; Cataldo, F. The formation of fullerenes: Clues from new C60, C70, and (possible) planar C24 detections in Magellanic cloud planetary nebulae. Astrophys. J. 2011, 737, L30. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Villaver, E.; García-Lario, P.; Acosta-Pulido, J.A.; Manchado, A.; Stanghellini, L.; Shaw, R.; Cataldo, F. Infrared study of fullerene planetary nebulae. Astrophys. J. 2012, 760, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kwok, S. Detection of C60 in the protoplanetary nebula IRAS 01005 + 7910. Astrophys. J. 2011, 730, 126. [Google Scholar] [CrossRef] [Green Version]
- Clayton, G.; Kelly, D.M.; Lacy, J.H.; Little-Marenin, I.R.; Feldman, P.A.; Bernath, P.F. A Mid-Infrared Search for C60 in R Coronae Borealis Stars and IRC + 10216. Astron. J. 1995, 109, 2096. [Google Scholar] [CrossRef]
- García-Hernández, D.A.; Rao, N.K.; Lambert, D.L. Are C60 molecules detectable in circumstellar shells of r coronae borealis stars? Astrophys. J. 2011, 729, 126. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.R.G.; Smith, K.T.; Sarre, P.J.; Migaszewski, C.; Goździewski, K.; Hinse, T.C. Detection of C60 in embedded young stellar objects, a Herbig Ae/Be star and an unusual post-asymptotic giant branch star. Mon. Not. R. Astron. Soc. 2012, 421, 3277–3285. [Google Scholar] [CrossRef] [Green Version]
- Sellgren, K.; Werner, W.M.; Ingalls, G.J.; Smith, T.J.D.; Carleton, T.M.; Joblin, C. Confirmation of C60 in the reflection nebula NGC 7023. EAS Publ. Ser. 2011, 46, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Herbig, G.H. The Search for Interstellar C60. Astrophys. J. 2000, 542, 334–343. [Google Scholar] [CrossRef]
- Iglesias-Groth, S. Fullerenes and the 4430 Å Diffuse Interstellar Band. Astrophys. J. 2007, 661, L167–L170. [Google Scholar] [CrossRef]
- Foing, B.H.; Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60+. Nat. Cell Biol. 1994, 369, 296–298. [Google Scholar] [CrossRef]
- Hameroff, S.; Withers, J.; Loufty, R.; Sundareshan, M.; Koruga, D. Fullerene C60: History, Physics, Nanobiology, Nanotechnology; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; Wiley-VCH: Stuttgart, NY, USA, 2005. [Google Scholar]
- Cataldo, F.; Iglesias-Groth, S.; Manchado, A. Low and High Temperature Infrared Spectroscopy of C60 and C70 Fullerenes. Full Nanotub. Carbon Nanostruct. 2010, 18, 224–235. [Google Scholar] [CrossRef]
- Iglesias-Groth, S.; Cataldo, F.; Manchado, A. Infrared spectroscopy and integrated molar absorptivity of C60 and C70 fullerenes at extreme temperatures. Mon. Not. R. Astron. Soc. 2011, 413, 213–222. [Google Scholar] [CrossRef]
- Cataldo, F.; Iglesias-Groth, S.; Manchado, A. On the Molar Extinction Coefficient and Integrated Molar Absorptivity of the Infrared Absorption Spectra of C60 and C70 Fullerenes. Full Nanotub. Carbon Nanostruct. 2012, 20, 191–199. [Google Scholar] [CrossRef]
- Cataldo, F.; Iglesias-Groth, S.; Manchado, A. Molar extinction coefficient of fullerenes and related hydrogenated derivatives “fulleranes”. Proc. Int. Astron. Union 2011, 7, 324–325. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, F.; Iglesias-Groth, S.; García-Hernández, D.A.; Manchado, A. Determination of the Integrated Molar Absorptivity and Molar Extinction Coefficient of Hydrogenated Fullerenes. Full Nanotub. Carbon Nanostruct. 2013, 21, 417–428. [Google Scholar] [CrossRef]
- Cataldo, F.; Hafez, Y.; Iglesias-Groth, S. FT-IR spectra of fullerenes C76, C78 and C84 at temperatures between −180°C and +250°C. Fuller. Nanotub. Carbon Nanostruct. 2014, 22, 901–913. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, Đ.; Jovančićević, B.; Koruga, D. The IR Spectra, Molar Absorptivity, and Integrated Molar Absorptivity of the C76-D2 and C84-D2:22 Isomers. J. Nanomater. 2017, 2017, 4360746. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. IR Spectroscopic Characterization of the C76-D2 and C84-D2:22 Isomers for their Qualitative and Quantitative Determination. In Recent Developments in Engineering Research Vol. 10; Elangovan, P., Ed.; Sciencedomain International, Book Publisher International: London, UK, 2020; pp. 138–153. ISBN 978-81-949988-1-5. 978-81-949988-1-5 or 978-93-90516-95-7. [Google Scholar]
- Jovanovic, T.; Koruga, D.; Mitrovic, A.; Stamenkovic, D.; Devic, G. IR and UV/VIS spectroscopic characterization of the higher fullerene C76-D2 for its quantitative and qualitative determination. J. Nanomater. 2018, 2018, 6862710. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Mitrovic, A.; Stamenkovic, D.; Devic, G. Chapter IR and UV/VIS spectroscopic characterization of the higher fullerene C76-D2 for its quantitative and qualitative determination. In Top 5 Contributions in Nanotechnology; Lakshmi, S., Ed.; Avid Science: Berlin, Germany, 2019; pp. 2–26. ISBN 978-93-88170-59-8. [Google Scholar]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B.; Stamenkovic, D. IR Spectroscopy of the Higher Fullerene C76-D2 for its Qualitative and Quantitative Determination. In Proceedings of the International Conference on Experimental and Numerical Investigations and New Technologies CNN TECH 2017, Zlatribor, Serbia, 2–5 July 2017; p. 24, ISBN 978-86-7083-938-0. [Google Scholar]
- Jovanovic, T.; Koruga, D.; Debeljkovic, A.; Stamenkovic, D.; Sakota-Rosic, M.T.J.; Cvetkovic, M. IR Spectroscopy of the Higher Fullerene C84-D2:22 for its Qualitative and Quantitative Determination. In Proceedings of the International Conference on Experimental and Numerical Investigations and New Technologies CNN TECH 2018, Zlatribor, Serbia, 4–7 July 2018; p. 19, ISBN 978-86-7083-979-3. [Google Scholar]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. Recent advances in IR and UV/VIS spectroscopic characterization of the C76 and C84 isomers of D2 symmetry. J. Nanomater. 2014, 2014, 701312. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. Chapter Recent advances in IR and UV/VIS spectroscopic characterization of the C76 and C84 isomers of D2 symmetry. In Top 5 Contributions in Nanotechnology; Lakshmi, S., Ed.; Avid Science: Berlin, Germany, 2019; pp. 2–35. ISBN 978-93-88170-59-8. [Google Scholar]
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nat. Cell Biol. 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Krätschmer, W.; Fostiropoulos, K.; Huffman, D.R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: Evidence for the presence of the C60 molecule. Chem. Phys. Lett. 1990, 170, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.M.; Behal, S.; Disko, M.; Gorun, S.M.; Greaney, M.; Hsu, C.S.; Kollin, E.B.; Millar, J.; Robbins, J. Characterization of C60 and C70 clusters. J. Am. Chem. Soc. 1991, 113, 2940–2944. [Google Scholar] [CrossRef]
- Bethune, D.S.; Meijer, G.; Tang, W.C.; Rosen, H.J.; Golden, W.G.; Seki, H.; Brown, C.A.; de Vries, M.S. Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem. Phys. Lett. 1991, 179, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Hare, J.P.; Dennis, T.J.; Kroto, H.W.; Taylor, R.; Allaf, A.W.; Balm, S.; Walton, D.R.M. The IR spectra of fullerene-60 and -70. J. Chem. Soc. Chem. Commun. 1991, 412–413. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B.; Simic-Krstic, J. Modifications of Fullerenes Extractions and Chromatographies with Different Solvents. Full Nanotub. Carbon Nanostruct. 2003, 11, 383–394. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Polić, P.; Dević, G. Extraction, Separation and Characterization of Fullerenes from Carbon Soot. Mater. Sci. Forum 2002, 413, 59–64. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovančičević, B.; Simić-Krstić, J. Improvement in separation of nanostructured carbon clusters C60 and C70. Int. J. Nanosci. 2003, 2, 129–140. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B.; Simic-Krstic, J. Advancement of the Process for Extraction, Chromatography and Characterization of Fullerenes. Full Nanotub. Carbon Nanostruct. 2009, 17, 135–150. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B.; Vajs, V.; Dević, G. Comparative Spectroscopic Characterization of the Basic and the Higher Fullerenes. Full Nanotub. Carbon Nanostruct. 2013, 21, 64–74. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. Isolation and Characterization of the Higher Fullerenes from Carbon Soot. Full Nanotub. Carbon Nanostruct. 2011, 19, 309–316. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D. The New Technological Process for Obtaining the Higher Fullerenes of High Purity from Carbon Soot; no. 2693/09 A-165/09; The Intellectual Property Office: Belgrade, Serbia, 2009. [Google Scholar]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. Advances in Chromatographic Separation on Al2O3 and Spectroscopic Characterization of the Higher Fullerenes. Full Nanotub. Carbon Nanostruct. 2014, 22, 384–396. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D. Recent advances in chromatographic separation and spectroscopic characterization of the higher fullerenes C76 and C84. Recent Pat. Nanotechnol. 2014, 8, 62–75. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D. The electronic structure and vibrational frequencies of the stable C76 isomer of D2 symmetry: Theory and experiment. Chem. Phys. Lett. 2013, 577, 68–70. [Google Scholar] [CrossRef]
- Jovanovic, T.; Koruga, D.; Jovancicevic, B. The electronic structure and vibrational frequencies of the stable C84 isomer of D2 symmetry: Theory and experiment. Diam. Relat. Mater. 2014, 44, 44–48. [Google Scholar] [CrossRef]
- Cataldo, F.; García-Hernández, D.A.; Manchado, A.; Iglesias-Groth, S. Spectroscopy of Fullerenes, Fulleranes and PAHs in the UV, Visible and Near Infrared Spectral Range. Proc. Int. Astron. Union 2013, 9, 294–296. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, F.; Iglesias-Groth, S.; Hafez, Y. On the molar extinction coefficients of the electronic absorption spectra of C60 and C70 fullerenes radical cation. Eur. Chem. Bull. 2013, 2, 1013–1018. [Google Scholar]
- Cioslowski, J. Heats of formation of higher fullerenes from ab initio Hartree—Fock and correlation energy functional calculations. Chem. Phys. Lett. 1993, 216, 389–393. [Google Scholar] [CrossRef]
- Cataldo, F.; Strazzulla, G.; Iglesias-Groth, S. Stability of C60 and C70 fullerenes toward corpuscular and γ radiation. Mon. Not. R. Astron. Soc. 2009, 394, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Groth, S. Hydrogenated fulleranes and the anomalous microwave emission of the dark cloud LDN 1622. Mon. Not. R. Astron. Soc. 2006, 368, 1925–1930. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, F.; Iglesias-Groth, S. On the action of UV photons on hydrogenated fulleranes C60H36 and C60D36. Mon. Not. R. Astron. Soc. 2009, 400, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, F.; Iglesias-Groth, S. Fulleranes: The Hydrogenated Fullerenes; Springer: Berlin, Germany, 2009. [Google Scholar]
- Yeretzian, C.; Hansen, K.; Diederichi, F.; Whetten, R.L. Fran Coalescence reactions of fullerenes. Nat. Cell Biol. 1992, 359, 44–47. [Google Scholar] [CrossRef]
- Kubler, B.; Millon, E.; Gaumet, J.J.; Muller, J.F. Formation of high mass Cn clusters (n > 100) by laser ablation/desorption coupled with mass spectrometry. Fuller. Sci. Technol. 1996, 4, 1247–1261. [Google Scholar] [CrossRef]
- Cataldo, F.; Keheyan, Y. On the mechanism of carbon clusters formation under laser irradiation. the case of diamond grains and solid C60 fullerene. Full Nanotub. Carbon Nanostruct. 2002, 10, 313–332. [Google Scholar] [CrossRef]
- Orlandi, G.; Zerbetto, F.; Fowler, P.W.; Manolopoulos, D.E. The electronic structure and vibrational frequencies of the stable C76 isomer of D2 symmetry. Chem. Phys. Lett. 1993, 208, 441–445. [Google Scholar] [CrossRef]
- Hampe, O.; Neumaier, M.; Boese, A.D.; Lemaire, J.; Niedner-Schatteburg, G.; Kappes, M.M. Infrared multiphoton electron detachment spectroscopy of C762−. J. Chem. Phys. 2009, 131, 124306. [Google Scholar] [CrossRef]
- Manolopoulos, D.E. Faraday communications. Proposal of a chiral structure for the fullerene C76. J. Chem. Soc. Faraday Trans. 1991, 87, 2861–2862. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; Fowler, P.W. Molecular graphs, point groups, and fullerenes. J. Chem. Phys. 1992, 96, 7603–7614. [Google Scholar] [CrossRef] [Green Version]
- Manolopoulos, D.E.; Fowler, P.W.; Taylor, R.; Kroto, H.W.; Walton, D.R.M. Faraday communications. An end to the search for the ground state of C84? J. Chem. Soc. Faraday Trans. 1992, 88, 3117–3118. [Google Scholar] [CrossRef]
- Negri, F.; Orlandi, G.; Zerbetto, F. Prediction of the structure and the vibrational frequencies of a C84 isomer of D2 symmetry. Chem. Phys. Lett. 1992, 189, 495–498. [Google Scholar] [CrossRef]
- Bettinger, H.F.; Scuseria, G.E. The infrared vibrational spectra of the two major C84 isomers. Chem. Phys. Lett. 2000, 332, 35–42. [Google Scholar] [CrossRef]
- Zhang, B.L.; Wang, C.Z.; Ho, K.M. Vibrational spectra of C84 isomers. Phys. Rev. B 1993, 47, 1643–1646. [Google Scholar] [CrossRef]
- Harigaya, K.; Abe, S. Optical absorption spectra and geometric effects in higher fullerenes. J. Phys. Condens. Matter 1996, 8, 8057–8066. [Google Scholar] [CrossRef]
- Saito, S.; Sawada, S.-I.; Hamada, N. Electronic and geometric structures of C76 and C84. Phys. Rev. B 1992, 45, 13845–13848. [Google Scholar] [CrossRef]
- Ehrler, O.T.; Furche, F.; Weber, J.M.; Kappes, M.M. Photoelectron spectroscopy of fullerene dianions C76(2-), C78(2-), C84(2-). J. Chem. Phys. 2005, 122, 094321. [Google Scholar] [CrossRef]
- Diederich, F.; Ettl, R.; Rubin, Y.; Whetten, R.L.; Beck, R.; Alvarez, M.; Anz, S.; Sensharma, D.; Wudl, F.; Khemani, K.C.; et al. The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70. Science 1991, 252, 548–551. [Google Scholar] [CrossRef]
- Jinno, K.; Matsui, H.; Ohta, H.; Saito, Y.; Nakagawa, K.; Nagashima, H.; Itoh, K. Separation and identification of higher fullerenes in soot extract by liquid chromatography-mass spectrometry. Chromatographia 1995, 41, 353–360. [Google Scholar] [CrossRef]
- Jinno, K.; Sato, Y.; Nagashima, H.; Itoh, K. Separation and identification of higher fullerenes by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J. Microcolumn Sep. 1998, 10, 79–88. [Google Scholar] [CrossRef]
- Kikuchi, K.; Nakahara, N.; Honda, M.; Suzuki, S.; Saito, K.; Shiromaru, H.; Yamauchi, K.; Ikemoto, I.; Kuramochi, T.; Hino, S.; et al. Separation, Detection, and UV/Visible Absorption Spectra of Fullerenes; C76, C78, and C84. Chem. Lett. 1991, 20, 1607–1610. [Google Scholar] [CrossRef]
- Kikuchi, K.; Nakahara, N.; Wakabayashi, T.; Honda, M.; Matsumiya, H.; Moriwaki, T.; Suzuki, S.; Shiromaru, H.; Saito, K.; Yamauchi, K.; et al. Isolation and identification of fullerene family: C76, C78, C82, C84, C90 and C96. Chem. Phys. Lett. 1992, 188, 177–180. [Google Scholar] [CrossRef]
- Ettl, R.; Chao, I.; Diederich, F.; Whetten, R.L. Isolation of C76, a chiral (D2) allotrope of carbon. Nat. Cell Biol. 1991, 353, 149–153. [Google Scholar] [CrossRef]
- Michel, R.H.; Schreiber, H.; Gierden, R.; Hennrich, F.; Rockenberger, J.; Beck, R.D.; Kappes, M.M.; Lehner, C.; Adelmann, P.; Armbruster, J.F. Vibrational spectroscopy of purified C76. Ber. Bunsenges. Phys. Chem. 1994, 98, 975–978. [Google Scholar] [CrossRef]
- Avent, A.G.; Dubois, D.; Pénicaud, A.; Taylor, R. The minor isomers and IR spectrum of [84]fullerene. J. Chem. Soc. Perkin Trans. 1997, 2, 1907–1910. [Google Scholar] [CrossRef]
- Dennis, T.J.S.; Hulman, M.; Kuzmany, H.; Shinohara, H. Vibrational Infrared Spectra of the Two Major Isomers of [84]Fullerene: C84{D2(IV)} and C84{D2d(II)}. J. Phys. Chem. B 2000, 104, 5411–5413. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy; Elsevier BV: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Jovanović, T.; Koruga, D. Optical absorption properties and applications of fullerenes. In Proceedings of the 14th Yougoslav Materials Research Society Conference “YUCOMAT ’12”, Materials Research Society of Serbia, Herceg Novi, Montenegro, 3–7 September 2012; p. 122. [Google Scholar]
- Stamenković, D.; Jagodić, N.; Conte, M.; Ilanković, N.; Jovanović, T.; Koruga, D. Optical properties of nanophotonic contact lenses. In Proceedings of the 12th Yougoslav Materials Research Society Conference “YUCOMAT ’10”, Materials Research Society of Serbia, Herceg Novi, Montenegro, 6–10 September 2010; p. 177. [Google Scholar]
- Jovanović, T.; Koruga, D.; Jovančićević, B.; Mitrović, A.; Stamenković, D.; Rakonjac, I. Comparative spectroscopic characterization of fullerene nanomaterials. In Proceedings of the 19th Yougoslav Materials Research Society Conference “YUCOMAT ‘17” of Materials Research Society of Serbia, Herceg Novi, Montenegro, 4–8 September 2017; p. 107. [Google Scholar]
ν a (cm−1) | ελ (L cm−1 mol−1) | Int. Range (cm−1) | ψ (Km mol−1) |
---|---|---|---|
1731.6 | 380.114 | 1710–1757 | 3.182 |
1699.8 | 271.510 | 1694–1710 | 0.113 |
1686.1 | 238.643 | 1679–1693 | 0.129 |
1601.6–1615.8 | 1585–1626 | 1.205 | |
1615.8 | 298.661 | 1605–1626 | 0.177 |
1601.6 | 294.374 | 1586–1605 | 0.260 |
1558.5 | 195.773 | 1552–1562 | 0.126 |
1541.0 | 187.199 | 1535–1547 | 0.054 |
1506.0 | 211.492 | 1501–1513 | 0.083 |
1491.5 | 212.921 | 1486–1500 | 0.234 |
1454.2–1464.9 | 1446–1479 | 3.135 | |
1464.9 | 514.440 | 1460–1480 | 0.683 |
1454.2 | 498.721 | 1446–1459 | 0.133 |
1399.8 | 854.542 | 1392–1419 | 2.185 |
1384.6 | 1429.000 | 1371–1392 | 5.990 |
1304.2 | 291.516 | 1294–1308 | 0.057 |
1263.8–1284.1 | 1250–1294 | 1.420 | |
1284.1 | 297.232 | 1278–1294 | 0.047 |
1263.8 | 365.824 | 1250–1272 | 0.710 |
1186.6 | 517.298 | 1170–1218 | 3.700 |
1160.8 | 358.679 | 1146–1170 | 0.236 |
1137.7 | 388.688 | 1131–1146 | 0.157 |
1122.0 | 441.561 | 1115–1131 | 0.410 |
1098.2 | 438.703 | 1091–1114 | 0.292 |
1079.9 | 428.700 | 1069–1084 | 0.170 |
1059.5 | 375.112 | 1050–1069 | 0.110 |
842.1 | 258.649 | 833–851 | 0.800 |
823.1 | 180.054 | 817–832 | 0.084 |
800.9 | 204.347 | 792–813 | 0.206 |
777.5–2 ab.shoulders | 768–832 | 2.131 | |
777.5 | 244.359 | 768–784 | 0.476 |
743.1 | 282.942 | 724–763 | 2.256 |
700.0–711.3 | 687–716 | 1.776 | |
711.3 | 234.356 | 705–716 | 0.353 |
700.0 | 221.495 | 687–704 | 0.489 |
632.4 | 168.622 | 626–637 | 0.184 |
476.0 | 270.081 | 468–481 | 0.433 |
463.6 | 242.930 | 458–470 | 0.349 |
419.2 | 200.060 | 415–426 | 0.473 |
ν a (cm−1) | ελ (L cm−1 mol−1) | Rel. int. [ελ] | Int. Range (cm−1) | ψ (Km mol−1) | Rel. int. [ελ] |
---|---|---|---|---|---|
1731.6 | 380.114 | 26.6 | 1694–1757 | 4.261 | 26.3 |
1615.8 | 298.661 | 20.9 | 1585–1650 | 3.371 | 20.8 |
1464.9 | 514.440 | 36.0 | 1433–1533 | 5.682 | 35.1 |
1384.6 | 1429.000 | 100.0 | 1370–1419 | 16.193 | 100.0 |
1263.8 | 365.824 | 25.6 | 1250–1328 | 4.084 | 25.2 |
1186.6 | 517.298 | 36.2 | 1146–1220 | 5.859 | 36.2 |
1122.0 | 441.561 | 30.9 | 1050–1146 | 4.971 | 30.7 |
842.1 | 258.649 | 18.1 | 768–851 | 2.930 | 18.1 |
743.1 | 282.942 | 19.8 | 690–763 | 3.196 | 19.7 |
476.0 | 250.075 | 17.5 | 426–504 | 2.841 | 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, T. Determination of New IR and UV/VIS Spectroscopic Parameters of the C84-D2:22 Isomer for Its Quantitative Assessment, Identification and Possible Applications. Crystals 2021, 11, 757. https://doi.org/10.3390/cryst11070757
Jovanović T. Determination of New IR and UV/VIS Spectroscopic Parameters of the C84-D2:22 Isomer for Its Quantitative Assessment, Identification and Possible Applications. Crystals. 2021; 11(7):757. https://doi.org/10.3390/cryst11070757
Chicago/Turabian StyleJovanović, Tamara. 2021. "Determination of New IR and UV/VIS Spectroscopic Parameters of the C84-D2:22 Isomer for Its Quantitative Assessment, Identification and Possible Applications" Crystals 11, no. 7: 757. https://doi.org/10.3390/cryst11070757
APA StyleJovanović, T. (2021). Determination of New IR and UV/VIS Spectroscopic Parameters of the C84-D2:22 Isomer for Its Quantitative Assessment, Identification and Possible Applications. Crystals, 11(7), 757. https://doi.org/10.3390/cryst11070757