Effect of Ultrafine Additives on the Morphology of Cement Hydration Products
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Multi-Walled Carbon Nanotubes
3.2. Carbon Black
3.3. Silica Fume and Complex Modification with Silica Fume and Nanotubes
4. Discussion
5. Conclusions
- The usage of ultrafine additives of different sizes and origins allows management of the morphology of cement hydration products with the formation of energy-efficient, stable structures with increased nucleation rates and compactness, with a consequent improvement in the physical and mechanical characteristics of hardened cement paste;
- The morphology of hardened cement paste depends on the chemical activity of the additives. Modification with the inert additives (carbon black, nanotubes) leads to the formation of the cement hydration products on their surface without strong adhesion, whereas chemically active additives (silica fume) possess high adhesion to cement hydration products;
- In the case of the usage of the active ultrafine additive (silica fume), its pozzolanic reaction with calcium hydroxide contributes to the formation of additional content of calcium silicate hydrates, with strong adhesion to the surface of silica fume particles. The improvement of the microstructure of cement matrix through the addition of silica fume enables the reduction of the porosity of hardened cement paste, and increases the mechanical properties and durability of hardened cement paste;
- The microstructure of hardened cement paste depends on the geometry of the ultrafine additive. Filaments of nanotubes are distributed between calcium silicate hydrates, and can work as reinforcement and nucleation centers. In the case of the usage of carbon black with flat surfaces, the carbon black crystals are oriented in empty volumes with low adhesion to cement hydration products due to the low chemical reactivity of carbon. The spherical particles of silica fume are fully and equally covered by the cement hydration products in the hydration processes due to the pozzolanic reaction;
- The comparison between different ultrafine additives and the complex additives based on them can lead to the obtainment of effective additives with suitable prices for construction practice.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Zhan, Z.; Hou, G. Utilization of fly ash microsphere powder as a mineral admixture of cement: Effects on early hydration and microstructure at different curing temperatures. Powder Technol. 2020, 375, 262–270. [Google Scholar] [CrossRef]
- Ilic, B.L.; Radonjanin, V.; Malesev, M.; Zdujic, M.; Mitrovic, A. Study on the addition effect of metakaolin and mechanically activated kaolin on cement strength and microstructure under different curing conditions. Constr. Build. Mater. 2017, 133, 243–252. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Yang, Y.; Gu, C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 2017, 199, 1–11. [Google Scholar] [CrossRef]
- MacLeod, A.J.N.; Collins, F.G.; Duan, W.; Gates, W.P. Quantitative microstructural characterisation of Portland cement-carbon nanotube composites using electronandx-raymicroscopy. Cem. Concr. Res. 2019, 123, 105767. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, H.; Sun, S.; Wu, C.; Ding, H. Properties and microstructure of basic magnesium sulfate cement: Influence of silica fume. Constr. Build. Mater. 2021, 266, 121076. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Khoshnazar, R. Microstructure of cement paste incorporating high volume of low-grade metakaolin. Cem. Concr. Compos. 2020, 106, 103453. [Google Scholar] [CrossRef]
- Ng, D.S.; Paul, S.C.; Anggraini, V.; Kong, S.Y.; Qureshi, T.S.; Rodriguez, C.R.; Liu, Q.; Savija, B. Influence ofSiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Constr. Build. Mater. 2020, 258, 119627. [Google Scholar] [CrossRef]
- Chen, J.; Akono, A.-T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem. Concr. Res. 2020, 137, 106197. [Google Scholar] [CrossRef]
- Korpa, A.; Kowald, T.; Trettin, R. Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cem. Concr. Res. 2008, 38, 955–962. [Google Scholar] [CrossRef]
- Mehairi, A.G.; Husein, M.M. Enhancement of cement properties by means of in situ grown nanoparticles. Constr. Build. Mater. 2020, 261, 120496. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, T.; Guo, S.; Ren, R. Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars. Materials 2021, 14, 915. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Wanga, Z.; Jin, C. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C–S–H gel. Cem. Concr. Res. 2020, 128, 105955. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Zheng, D.; Yang, H.; Cui, H.; Tang, W.; Li, D. Effect of Graphene Oxide (GO) on the Morphology and Microstructure of Cement Hydration Products. Nanomaterials 2017, 7, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.O.; Cachim, P.B.; Costa, P.M.F.J. Electrical properties of cement-based composites containing carbon black particles. Mater. Today Proc. 2015, 2, 193–199. [Google Scholar] [CrossRef]
- Nalon, G.H.; Ribeiro, J.C.L.; Araujo, E.N.D.; Pedroti, L.G.; Carvalho, J.M.F.; Santos, R.F.; Aparecido-Ferreira, A. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites. J. Build. Eng. 2020, 32, 101724. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Shen, L.; Sheng, D. Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Mater. Design. 2019, 182, 108012. [Google Scholar] [CrossRef]
- Yakovlev, G.I.; Grahov, V.P.; Gordina, A.F.; Shaibadullina, A.V.; Saidova, Z.S.; Nikitina, S.V.; Begunova, E.V.; Elrefai, A.E.M.M. Influence of carbon black dispersion on the properties of fine-grained concrete. Build. Mater. 2018, 8, 89–92. [Google Scholar] [CrossRef]
- Medina, N.F.; Barbero-Barrera, M.M.; Bustamante, R. Improvement of the properties of gypsum-based composites with recycled isostatic graphite powder from the milling production of molds for Electrical Discharge Machining (EDM) used as a new filler. Constr. Build. Mater. 2016, 107, 17–27. [Google Scholar] [CrossRef]
- Grahov, V.; Mikhailov, Y.; Drochytka, R.; Kizinievich, O.; Ginchitskaya, Y.; Gordina, A. Structural ceramics modified with technogenic isostatic nanographite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 032070. [Google Scholar] [CrossRef]
- Medina, N.F.; Barbero-Barrera, M.M.; Jove-Sandoval, F. Improvement of the mechanical and physical properties of cementpaste sand mortars through the addition isostatic graphite. Constr. Build. Mater. 2018, 189, 898–905. [Google Scholar] [CrossRef]
- Xu, G.; Du, S.; He, J.; Shi, X. The role of admixed graphene oxide in a cement hydration system. Carbon 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Sun, T.; Ma, Y.; Zhou, Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 2014, 64, 231–239. [Google Scholar] [CrossRef]
- Du, H.; Pang, S.D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Constr. Build. Mater. 2018, 167, 403–413. [Google Scholar] [CrossRef]
- Wang, B.; Pang, B. Mechanical property and toughening mechanism of water reducing agents modified graphene nanoplates lets reinforced cement composites. Constr. Build. Mater. 2019, 226, 699–711. [Google Scholar] [CrossRef]
- Tafesse, M.; Kim, H.-K. The role of carbon nanotube on hydration kinetics and shrinkage of cement composite. Compos. Part B 2019, 169, 55–64. [Google Scholar] [CrossRef]
- Echeverry-Cardona, L.M.; Alzate, N.; Restrepo-Parra, E.; Ospina, R.; Quintero-Orozco, J.H. Time-Stability Dispersion of MWCNTs for the Improvement of Mechanical Properties of Portland Cement Specimens. Materials 2020, 13, 4149. [Google Scholar] [CrossRef] [PubMed]
- Arrechea, S.; Guerrero-Gutierrez, E.M.A.; Velasquez, L.; Cardona, J.; Posadas, R.; Callejas, K.; Torres, S.; Diaz, R.; Barrientos, C.; Garcia, E. Effect of additions of multiwall carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-Thiazol) in mechanical compression properties of a cement-based material. Materialia 2020, 11, 100739. [Google Scholar] [CrossRef]
- Pan, J.; Cai, J.; Ma, H.; Leung, C.K.Y. Development of multiscale fiber-reinforced engineered cementitious composites with PVA fiber and CaCO3 whisker. J. Mat. Civil Eng. 2018, 30, 04018106. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Nankali, M. Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunnel ingresistivity. Compos. Part A Appl. Sci. Manufact. 2019, 126, 105616. [Google Scholar] [CrossRef]
- Paul, S.C.; Rooyen, A.S.; Zijl, G.P.A.G.; Petrik, L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018, 189, 1019–1034. [Google Scholar] [CrossRef]
- Reales, O.A.M.; Filho, R.D.T. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of silica fume in concrete: Review of hardened properties. Resour. Conserv. Recycl. 2011, 55, 923–932. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Liu, B. Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill. Constr. Build. Mater. 2020, 254, 119305. [Google Scholar] [CrossRef]
- Jeong, Y.; Kang, S.-H.; Kim, M.O.; Moon, J. Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cem. Concr. Compos. 2020, 112, 103688. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Vu, Q.H.; Barbarulo, R.; Daronnat, S.; Chanvillard, G. Dependence of compressive strength on phase assemblage in cement pastes: Beyond gel–spaceratio—Experimental evidence and micromechanical modeling. Cem. Concr. Res. 2014, 56, 1–11. [Google Scholar] [CrossRef]
- Krishnya, S.; Yoda, Y.; Elakneswaran, Y. A two-stage model for the prediction of mechanical properties of cement paste. Cem. Concr. Compos. 2021, 115, 103853. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Pan, S.; Cui, X.; Corr, D.J.; Shah, S.P. Effect of graphene oxide on the hydration and microstructure of fly ash-cement system. Constr. Build. Mater. 2019, 198, 106–119. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Wang, Y.; Zhou, Z.; Xu, D.; Du, P.; Cheng, X. Synergistic effects of nano-silica and fly ash on properties of cement-based composites. Constr. Build. Mater. 2020, 262, 120737. [Google Scholar] [CrossRef]
- Song, C.; Hong, G.; Choi, S. Effect of dispersibility of carbon nanotubes by silica fume on material properties of cement mortars: Hydration, pore structure, mechanical properties, self-desiccation, and autogenous shrinkage. Constr. Build. Mater. 2020, 265, 120318. [Google Scholar] [CrossRef]
- Skripkiunas, G.; Karpova, E.; Bendoraitiene, J.; Barauskas, I. Effect of MWCNT and PCE plasticizer on the properties of cement pastes. IOP Conf. Ser. Mat. Sci. Eng. 2019, 660, 012032. [Google Scholar] [CrossRef]
- Khroustalev, B.M.; Leonovich, S.N.; Yakovlev, G.I.; Polyanskikh, I.S.; Lahayne, O.; Eberhardsteiner, J.; Skripkiunas, G.; Pudov, I.; Karpova, E.A. Structural modification of new formations in cement matrix using carbon nanotube dispersions and nanosilica. Sci. Tech. 2017, 16, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Sobolkina, A.; Mechtcherine, V.; Bergold, S.T.; Neubauer, J.; Bellmann, C.; Khavrus, V.; Oswald, S.; Leonhardt, A.; Reschetilowski, W. Effect of carbon-based materials on the early hydration of tricalcium silicate. J. Am. Ceram. Soc. 2016, 99, 2181–2196. [Google Scholar] [CrossRef]
- Shi, T.; Gao, Y.; Corr, D.J.; Shah, S.P. FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials. Adv. Cem. Res. 2019, 31, 353–361. [Google Scholar] [CrossRef]
- Trezza, M.A. Hydration study of ordinary portland cement in the presence of zinc ions. Mat. Res. 2007, 10, 331–334. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fanqueiro, R.; Paiva, M.C. Microstructure and mechanical properties of carbon nanotube reinforced c ementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Yang, H.; Monasterio, M.; Cui, H.; Han, N. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos. Part A 2017, 102, 263–272. [Google Scholar] [CrossRef]
- Souza, T.C.; Pinto, G.; Cruz, V.S.; Moura, M.; Ladeira, L.O. Evaluation of the rheological behavior, hydrationprocess, and mechanical strength of Portland cement pastes produced with carbon nanotubes synthesized directly on clinker. Constr. Build. Mater. 2020, 248, 118686. [Google Scholar] [CrossRef]
- Alksnis, F.F. Hardening and Destruction of Gypsum-Cement Composite Materials; Stroyizdat: Leningrad, Russia, 1988; p. 103. (In Russian) [Google Scholar]
- Rahman, M.M.; Basuoni, M.T. Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation. Constr. Build. Mater. 2014, 73, 652–662. [Google Scholar] [CrossRef]
- Mulenga, D.M.; Stark, J.; Nobst, P. Thaumasite formationin concrete and mortars containing fly ash. Cem. Concr. Compos. 2003, 25, 907–912. [Google Scholar] [CrossRef]
- Accardo, G.; Cioffi, R.; Colangelo, F.; d’Angelo, R.; Stefano, L.; Paglietti, F. Diffuse reflectance Infrared Fourier Transform spectroscopy for the determination of asbestos species in bulk building materials. Materials 2014, 7, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Ray, S.; Sakar, S. Early strength development in concrete using preformed CSH nanocrystals. Constr. Build. Mater. 2020, 233, 117214. [Google Scholar] [CrossRef]
Component | Amount, % |
---|---|
Tricalcium silicate (C3S) | 59.0/57.9 |
Dicalcium silicate (C2S) | 16.0/15.6 |
Tricalcium aluminate (C3A) | 8.1/7.5 |
Tetracalciumaluminoferrite (C4AF) | 12.0/11.9 |
Property | Value |
---|---|
Two-day compressive strength, MPa | 15.8 ± 2.2/28 ± 2.0 |
Twenty-eight-day compressive strength, MPa | 48.5 ± 3.0/55 ± 3.0 |
Initial setting time, min | 150/180 |
Final setting time, min | 200/225 |
Volume stability, mm | 1.0/1.0 |
Water consumption, % | 25.0/26.6 |
Specific surface, cm2/g | 3400/3552 |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | MnO |
---|---|---|---|---|---|---|---|---|
96.12% | 0.86% | 0.34% | 0.39% | 0.53% | 0.21% | 1.05% | 0.36% | 0.04% |
Property | Value |
---|---|
Color | Light grey powder |
Bulk density, kg/m3 | 230 |
Specific surface, cm2/g | 15–35 |
Pozzolanic activity, mg Ca(OH)2/g | >300 |
Humidity, % | <0.5 |
pH | 5–7 |
Particle size dispersion, nm | 14–332 |
Average particle diameter (more than 50% of the volume), nm | 169 |
Sample | 90–200 °C Mass Loss, wt.% | 430–465 °C Mass Loss, wt.% | 650–750 °C Mass Loss, wt.% |
---|---|---|---|
Reference | 6.60 | 3.00 | 1.69 |
0.06% MWCNT | 6.43 | 3.05 | 1.52 |
0.12% MWCNT | 6.36 | 3.06 | 1.40 |
Type of Ultrafine Additive | Form and Size of the Additive | Applied Dosage of Additive, % bwoc | Observed Morphology of Cement Hydrates |
---|---|---|---|
Multi-walled carbon nanotubes | Filaments with a diameter of ~15–20 nm and length of 0.1–10 µm | 0.25 | Overgrowth of nanotubes by cement hydration products (C–S–H gel, portlandite, ettringite); filling pores with nanotube bundles; reinforcement of cement matrix; the surface of the tubes is uncovered by hydration products. |
Carbon black | Nanoplates with size from 40 to170 nm | 0.005 | Formation of ettringite, calcium monosulfate hydrate, fibers of calcium silicate hydrates, and thaumasite formations. Placement of carbon black inside the cement hydration products (such as calcium monosulfate hydrate orC–S–H gel). |
Silica fume | Particles of spherical shape with a diameter of ~300 nm | 3 | Formation of C–S–H gel, portlandite, and ettringite. Silica fume is covered with calcium silicate hydrates and has strong adhesion with them. |
Complex of silica fume and nanotubes | See parameters for silica fume and nanotubes above | 0.005 (nanotubes) and 3 (silica fume) | Needles of ettringite; C–S–H gel. Silica fume covered with calcium silicate hydrates. Nanotubes growing from the cement hydration products, with the absence of their covering with the cement hydration products. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovlev, G.; Drochytka, R.; Skripkiūnas, G.; Urkhanova, L.; Polyanskikh, I.; Pudov, I.; Karpova, E.; Saidova, Z.; Elrefai, A.E.M.M. Effect of Ultrafine Additives on the Morphology of Cement Hydration Products. Crystals 2021, 11, 1002. https://doi.org/10.3390/cryst11081002
Yakovlev G, Drochytka R, Skripkiūnas G, Urkhanova L, Polyanskikh I, Pudov I, Karpova E, Saidova Z, Elrefai AEMM. Effect of Ultrafine Additives on the Morphology of Cement Hydration Products. Crystals. 2021; 11(8):1002. https://doi.org/10.3390/cryst11081002
Chicago/Turabian StyleYakovlev, Grigory, Rostislav Drochytka, Gintautas Skripkiūnas, Larisa Urkhanova, Irina Polyanskikh, Igor Pudov, Ekaterina Karpova, Zarina Saidova, and Ali E. M. M. Elrefai. 2021. "Effect of Ultrafine Additives on the Morphology of Cement Hydration Products" Crystals 11, no. 8: 1002. https://doi.org/10.3390/cryst11081002
APA StyleYakovlev, G., Drochytka, R., Skripkiūnas, G., Urkhanova, L., Polyanskikh, I., Pudov, I., Karpova, E., Saidova, Z., & Elrefai, A. E. M. M. (2021). Effect of Ultrafine Additives on the Morphology of Cement Hydration Products. Crystals, 11(8), 1002. https://doi.org/10.3390/cryst11081002