Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations
Abstract
:1. Introduction
2. The Relation between Elastic Property and Ionic Conductivity
3. Temperature Dependence of the Anderson–Grüneisen Parameter
4. Grüneisen Parameter and Ionic Conductivity in Glasses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fjeldly, T.A.; Hanson, R.C. Elastic and piezoelectric constants of silver-iodide: Study of a material at the covalent-ionic phase transition. Phys. Rev. B 1974, 10, 3569–3577. [Google Scholar] [CrossRef]
- Hattori, T.; Imanishi, T.; Kurokawa, H.; Mitsuishi, A. Brillouin scattering in silver halides. J. Physique 1981, 42, C6-920. [Google Scholar] [CrossRef]
- Aliev, A.E.; Fershtat, L.N.; Khabibullaev, P.K. Acoustic anomalies in lanthanum trifluoride in the region of the phase transitions in the superionic state. High Temp. 1984, 22, 381–385. [Google Scholar]
- Masasreh, M.O.; Pederson, D.O. Elastic constants of cubic lead fluoride from 300 to 850 K. Phys. Rev. B 1984, 30, 3482–3485. [Google Scholar] [CrossRef]
- Carini, G.; Cutroni, M.; Federico, M.; Galli, G.; Tripodo, G. Acoustic properties and diffusion in superionic glasses. Phys. Rev. B 1984, 30, 7219–7224. [Google Scholar] [CrossRef]
- Kanashiro, T.; Michihiro, Y.; Ozaki, J.; Ohno, T.; Kojima, A. Ultrasonic measurements in the ionic conductor β-Ag3SI. J. Phys. Soc. Jpn. 1987, 56, 560–564. [Google Scholar] [CrossRef]
- Kezhionis, A.; Samulionis, V.; Skritskij, V.; Ukshe, E.A. Ultrasonic investigation of phase transition and relaxational phenomena in superionic NASICON. Solid State Ion. 1989, 36, 235–238. [Google Scholar] [CrossRef]
- Berezin, V.M.; Pashnin, M.I. Temperature dependence of the elastic moduli of copper and silver chalcogenides. Sov. Phys. Solid State 1992, 34, 162–163. [Google Scholar]
- Manasreh, M.O.; Pederson, D.O. Elastic constants of barium fluoride from 300 to 1250 K. Phys. Rev. B 1985, 31, 3960–3964. [Google Scholar] [CrossRef] [PubMed]
- Hughes, W.C.; Cain, L.S. Second-order elastic constants of AgCl from 20 to 430 °C. Phys. Rev. B 1996, 53, 5174–5180. [Google Scholar] [CrossRef]
- Gorin, Y.F.; Mel’nikova, N.V.; Baranova, E.R.; Kobeleva, O.L. Influence of ionic conductivity on the elastic characteristics of four-component copper and silver chalcogenides. Tech. Phys. Lett. 1997, 23, 550–552. [Google Scholar] [CrossRef]
- Bredikhin, S.I.; Bogatyrenko, M.V. The influence of elastic stress fields on ionic transport through a (superionic crystal)–(electrode) heterojunction. Phys. Solid State 1999, 41, 1620–1625. [Google Scholar] [CrossRef]
- Cain, L.S.; Hu, G. High-temperature elastic constants of AgBr. Phys. Rev. B 2001, 64, 104104. [Google Scholar] [CrossRef]
- Reddy, C.N.; Chakradhar, R.P.S. Elastic properties and spectroscopic studies of fast ion conducting Li2O-ZnO-B2O3 glass system. Mater Res. Bull. 2007, 42, 1337–1347. [Google Scholar] [CrossRef]
- Samulionis, V.; Jonkus, V. Investigation of acoustoionic and acoustoelectronic interaction in fast ionic conductors. Solid State Ion. 2008, 179, 120–125. [Google Scholar] [CrossRef]
- Endou, S.; Michihiro, Y.; Itsuki, K.; Nakamura, K.; Ohno, T. RUS study of the elastic constants in silver halide crystals. Solid State Ion. 2009, 180, 488–491. [Google Scholar] [CrossRef]
- Sadakuni, H.; Aniya, M. Analysis of temperature dependence of the second-order elastic constants of PbF2. Phys. Rep. Kumamoto Univ. 2012, 14, 15–20. [Google Scholar]
- Sadakuni, H.; Aniya, M. Temperature dependence of elastic parameters of ionic conductors. In Solid State Ionics, Ionics for Sustainable World; Chowdari, B.V.R., Kawamura, J., Mizusaki, J., Amezawa, K., Eds.; World Scientific: Singapore, 2012; pp. 705–713. ISBN 978-981-4415-03-3. [Google Scholar]
- Aniya, M.; Sadakuni, H. Analysis of the temperature dependence of elastic constants of AgCl. Thermochim. Acta 2012, 532, 111–114. [Google Scholar] [CrossRef]
- Sadakuni, H.; Aniya, M. Anomalous temperature dependency of the Anderson-Grüneisen parameters in high ionic conductors. Phys. B 2013, 410, 81–84. [Google Scholar] [CrossRef]
- Yadawa, P.K. Non-destructive characterization of superionic conductor: Lithium nitride. Mater. Sci. Poland 2014, 32, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Nagao, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Evaluation of Young’s modulus of Li2S-P2S5-P2O5 oxysulfide glass solid electrolytes. J. Ceram. Soc. Jpn. 2014, 122, 552–555. [Google Scholar] [CrossRef] [Green Version]
- Bilanych, V.S.; Buchuk, R.Y.; Petrachenkov, A.E.; Skubenych, K.V.; Studenyak, I.P. Internal Friction in Cu6PS5Br superionic crystals and related composites. Phys. Solid State 2014, 56, 739–745. [Google Scholar] [CrossRef]
- Ismail, M.; Supardan, S.N.; Yahya, A.K.; Yusof, M.I.M.; Halimah, M.K. Anomalous elastic and optical behaviours of mixed electronic-ionic of xAg2O-(35 − x)[0.5MoO3-0.5V2O5]-65TeO2 conductor glasses. Chalc. Lett. 2016, 13, 489–505. [Google Scholar]
- Cheng, E.J.; Taylor, N.J.; Wolfenstine, J.; Sakamoto, J. Elastic properties of lithium cobalt oxide (LiCoO2). J. Asian Ceram. Soc. 2017, 5, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Wolfenstine, J.; Allen, J.L.; Sakamoto, J.; Siegel, D.J.; Choe, H. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: A brief review. Ionics 2018, 24, 1271–1276. [Google Scholar] [CrossRef]
- Bilanich, V.S.; Skubenych, K.V.; Babilya, M.I.; Pogodin, A.I.; Studenyak, I.P. The effect of isovalent cation substitution on mechanical properties of (CuxAg1-x)7SiS5I superionic mixed single crystals. Ukr. J. Phys. 2020, 65, 453–457. [Google Scholar] [CrossRef]
- Garcia-Mendez, R.; Smith, J.G.; Neuefeind, J.C.; Siegel, D.J.; Sakamoto, J. Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 2020, 10, 2000335. [Google Scholar] [CrossRef]
- Ke, X.; Wang, Y.; Ren, G.; Yuan, C. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 2020, 26, 313–324. [Google Scholar] [CrossRef]
- Wang, W.; Christensen, R.; Curtis, B.; Martin, S.W.; Kieffer, J. A new model linking elastic properties and ionic conductivity of mixed network former glasses. Phys. Chem. Chem. Phys. 2020, 20, 1629–1641. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Zheng, Y.; Koh, X.; Lim, Q.F.; Sharma, M.; Fam, D.W.H. Elucidating the relationship between mechanical properties and ionic conductivity in a highly conductive gel polymer electrolyte. Mater. Lett. 2021, 294, 129789. [Google Scholar] [CrossRef]
- Baktash, A.; Demir, B.; Yuan, Q.; Searles, D.J. Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte. Energy Storage Mater. 2021, 41, 614–622. [Google Scholar] [CrossRef]
- Iguchi, F.; Hinata, K. High-temperature elastic properties of yttrium-doped barium zirconate. Metals 2021, 11, 968. [Google Scholar] [CrossRef]
- Saito, F.; Tozaki, K.; Kojoma, A. Thermal conductivity of superionic conductor Ag3SI. J. Phys. Soc. Jpn. 1993, 62, 3351–3352. [Google Scholar] [CrossRef]
- Goetz, M.C.; Cowen, J.A. The thermal conductivity of silver iodide. Solid State Commun. 1982, 41, 293–295. [Google Scholar] [CrossRef]
- Aniya, M.; Usuki, T.; Kobayashi, M.; Okazaki, H. Liquidlike model for thermal conductivity in superionic conductors. Phys. Rev. B 1990, 41, 7113–7117. [Google Scholar] [CrossRef] [PubMed]
- Aniya, M. A note on the possibility of conductivity enhancement in fast ion conductor superlattices. Jpn. J. Appl. Phys. 1990, 29, 67–68. [Google Scholar] [CrossRef]
- Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 2000, 408, 946–949. [Google Scholar] [CrossRef]
- Lee, D.; Gao, X.; Sun, L.; Jee, Y.; Poplawsky, J.; Farmer, T.O.; Fan, L.; Guo, E.-J.; Lu, Q.; Heller, W.T.; et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 2020, 11, 1371. [Google Scholar] [CrossRef]
- Aniya, M. A chemical approach for the microscopic mechanism of fast ion transport in solids. Solid State Ion. 1992, 50, 125–129. [Google Scholar] [CrossRef]
- Aniya, M. Bond fluctuation model of superionic conductors: Concepts and applications. Integr. Ferroelec. 2010, 115, 81–94. [Google Scholar] [CrossRef]
- Aniya, M. Bonding character and ionic conduction in solid electrolytes. Pure Appl. Chem. 2019, 91, 1797–1806. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Elliott, S.R. Photodoping of amorphous chalcogenides by metals. Adv. Phys. 1991, 40, 625–684. [Google Scholar] [CrossRef]
- Aniya, M. A model for the photo-electro ionic phenomena in chalcogenide glasses. J. Non-Cryst. Solids 1996, 198–200, 762–765. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hanashima, T.; Simon, A.-A.A.; Mitkova, M. Silver photodiffusion into amorphous Ge chalcogenides. Eur. Phys. J. Appl. Phys. 2020, 90, 30101. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Yang, X.; Adair, K.R.; Wang, C.; Zhao, F.; Sun, X. Progress and perspectives on halide lithium conductors for all-solid -state lithium batteries. Energy Environ. Sci. 2020, 13, 1429–1461. [Google Scholar] [CrossRef]
- Yang, X.; Adair, K.R.; Gao, X.; Sun, X. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 2021, 14, 643–671. [Google Scholar] [CrossRef]
- Agarkova, E.A.; Zadorozhnaya, O.Y.; Burmistrov, I.N.; Yalovenko, D.V.; Agaekov, D.A.; Rabotkin, S.V.; Solovyev, A.A.; Nepochatov, Y.K.; Levin, M.N.; Bredikhin, S.I. Relationships between mechanical stability of the anode supports and electrochemical performance of intermediate-temperature SOFCs. Mater. Lett. 2021, 303, 130516. [Google Scholar] [CrossRef]
- Sadakuni, H. Study of Elastic Properties of Ionic Conductors. Ph.D. Thesis, Kumamoto University, Kumamoto, Japan, 25 March 2013. [Google Scholar]
- Oberschmidt, J. Effect of Frenkel defects on the high-pressure phase transitions in PbF2 and SrCl2. Phys. Rev. B 1981, 24, 3584–3587. [Google Scholar] [CrossRef]
- Sitte, W. Chemical diffusion in mixed conductors: α’-Ag2Te and β-Ag2Se. Solid State Ion. 1997, 94, 85–90. [Google Scholar] [CrossRef]
- Tsuchiya, Y. Velocity of sound and high-energy γ-ray attenuation in liquid Ag-Se alloys. J. Phys. Condens. Matter. 1996, 8, 1897. [Google Scholar] [CrossRef]
- Aniya, M.; Iseki, T. A model for the composition dependence of sound velocity in liquid silver chalcogenides. J. Non-Cryst. Solids 2002, 312–314, 400–403. [Google Scholar] [CrossRef]
- Catlow, C.R.A.; Comins, J.D.; Germano, F.A.; Harley, R.T.; Hayes, E. Brillouin scattering and theoretical studies of high-temperature disorder in fluorite crystals. J. Phys. C Solid State Phys. 1978, 11, 3197–3212. [Google Scholar] [CrossRef]
- Lawn, B.R. Thermal expansion of silver halides. Acta Cryst. 1963, 16, 1163–1169. [Google Scholar] [CrossRef]
- Aboagye, J.K.; Friauf, R.J. Anomalous high-temperature ionic conductivity in the silver halides. Phys. Rev. B 1975, 11, 1654–1664. [Google Scholar] [CrossRef]
- Aniya, M.; Okazaki, H.; Kobayashi, M. Static dielectric function of superionic conductor α-AgI. Phys. Rev. Lett. 1990, 65, 1474, Erratum: Phys. Rev. Lett. 1990, 65, 2920. [Google Scholar] [CrossRef] [PubMed]
- Harrison, W. Electronic Structure and the Properties of Solids; W.H. Freeman and Company: San Francisco, CA, USA, 1980; ISBN 0-486-66021-4. [Google Scholar]
- Shimojo, F.; Aniya, M. Diffusion of mobile ions and bond fluctuations in superionic conductor CuI from ab initio molecular-dynamics simulations. J. Phys. Soc. Jpn. 2003, 72, 2702–2705. [Google Scholar] [CrossRef]
- Adelstein, N.; Wood, B.C. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chem. Mater. 2016, 28, 7218–7231. [Google Scholar] [CrossRef]
- Düel, A.; Heitjans, P.; Fedorov, P.; Scholz, G.; Cibin, G.; Chadwick, A.V.; Pickup, D.M.; Ramos, S.; Sayle, L.W.L.; Sayle, E.K.L.; et al. Is geometric frustration-induced disorder a recipe for high ionic conductivity? J. Am. Chem. Soc. 2017, 139, 5842–5848. [Google Scholar] [CrossRef]
- Kweon, K.E.; Varley, J.B.; Shea, P.; Adelstein, N.; Mehta, P.; Heo, T.W.; Udovic, T.J.; Stavila, V.; Wood, B.C. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closo-borate solid electrolytes. Chem. Mater. 2017, 29, 9142–9153. [Google Scholar] [CrossRef]
- Moury, R.; Łodziana, Z.; Remhof, A.; Duchêne, L.; Roedern, E.; Gigante, A.; Hagemann, H. Pressure-induced phase transitions in Na2B12H12, structural investigation on a candidate for solid-state electrolyte. Acta Cryst. B 2019, 75, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Abudouwufu, T.; Zuo, W.; Palenovich, V.; Zhang, X.; Zeng, X.; Tolstoguzov, A.; Zou, C.; Tian, C.; Fu, D. Crystal structure and ion transport properties of solid electrolyte CsAg4Br3-xI2+x (0 < x < 1). Solid State Ion. 2021, 364, 115634. [Google Scholar] [CrossRef]
- Liu, Q.; He, Q. Elastic constants for various classes of solids at high temperature. Acta Phys. Pol. A 2007, 112, 69–76. [Google Scholar] [CrossRef]
- Slagle, O.D.; McKinstry, H.A. Temperature dependence of the elastic constants of the alkali halides. I. NaCl, KCl, and KBr. J. Appl. Phys. 1967, 38, 437–446. [Google Scholar] [CrossRef]
- Vijay, A.; Verma, T.S. Analysis of temperature dependence of elastic constants and bulk modulus for ionic solids. Phys. B 2000, 291, 373–378. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ohno, I.; Anderson, O.L. High temperature elasticity of sodium chloride. J. Phys. Chem. Solids 1987, 48, 143–151. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, O.L. Derivation of Wachtman’s equation for the temperature dependence of elastic moduli of oxide compounds. Phys. Rev. 1966, 144, 553–557. [Google Scholar] [CrossRef]
- Pandey, V.; Gupta, S.; Tomar, D.S.; Goyal, S.C. Analysis of Anderson- Grüneisen parameter under high temperature in alkaline earth oxides. Phys. B 2010, 4943–4947. [Google Scholar] [CrossRef]
- Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 2004, 67, 1233–1314. [Google Scholar] [CrossRef]
- Martin, R.M. Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1970, 1, 4005–4011. [Google Scholar] [CrossRef]
- Lucovsky, G.; Martin, R.M.; Burstein, E. Localized effective charges in diamond crystals. Phys. Rev. B 1971, 4, 1367–1374. [Google Scholar] [CrossRef]
- Aniya, M. Interatomic force constants and localized effective charges in copper halides. Solid State Ion. 1999, 121, 281–284. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Xu, T.; Zhang, T.Y. Temperature dependent Grüneisen parameter. Sci. China Tech. Sci. 2019, 62, 1565–1576. [Google Scholar] [CrossRef]
- Drebushchak, V.A. Thermal expansion of solids: Review on theories. J. Therm. Anal. Cal. 2020, 142, 1097–1113. [Google Scholar] [CrossRef]
- Ruppin, R. Grüneisen parameters of CaF2 and BaF2 from a lattice dynamical shell model. J. Phys. Chem. Solids 1972, 33, 83–86. [Google Scholar] [CrossRef]
- Bogue, R.; Sladek, R.J. Elasticity and thermal expansivity of (AgI)x(AgPO3)1 − x glasses. Phys. Rev. B 1990, 42, 5280–5288. [Google Scholar] [CrossRef] [PubMed]
- Murin, I.V.; Glumov, O.V.; Gunβer, W. High pressure studies of superionic conductors with predominant anionic conductivity. Ionics 1995, 1, 274–278. [Google Scholar] [CrossRef]
- Saunders, G.A.; Metcalfe, R.D.; Cutroni, M.; Federico., M.; Piccolo, A. Elastic and anelastic properties, vibrational anharmonicity, and fractal bond connectivity of superionic glasses. Phys. Rev. B 1996, 53, 5287–5300. [Google Scholar] [CrossRef]
- Carini, G.; Carini, G.; D’Angelo, G.; Tripodo, G.; Bartolotta, A.; Salvato, G. Ultrasonic relaxations, anharmonicity, and fragility in lithium borate glasses. Phys. Rev. B 2005, 72, 014201. [Google Scholar] [CrossRef]
- Dologlou, E. The role of Anderson-Gruneisen parameter in the estimation of self-diffusion coefficients in alkaline earth oxides. J. Appl. Phys. 2012, 11, 096101. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Mantatov, V.V.; Sanditov, B.D. Anharmonicity of lattice vibrations and transverse deformation of crystalline and vitreous solids. Phys. Solid State 2009, 51, 998–1003. [Google Scholar] [CrossRef]
- Farley, J.M.; Saunders, G.A. Ultrasonic wave velocities and attenuation in IVb-Vb-VIb chalcogenide glasses: 2–300 K. J. Non-Cryst. Solids 1975, 18, 417–427. [Google Scholar] [CrossRef]
- Aniya, M.; Ikeda, M. The bond strength-coordination number fluctuation model of viscosity: Concept and applications. J. Polym. Res. 2020, 27, 165. [Google Scholar] [CrossRef]
- Aniya, M.; Ikeda, M. Arrhenius crossover phenomena and ionic conductivity in ionic glass-forming liquids. Phys. Status Solidi B 2020, 257, 2000139. [Google Scholar] [CrossRef]
- Baud, G.; Besse, J.P. Superionic conducting glasses: Glass formation and conductivity in the system Ag2S-AgPO3. J. Am. Ceram. Soc. 1981, 64, 242–244. [Google Scholar] [CrossRef]
- Fanggao, C.; Saunders, G.A.; Wei, Z.; Almond, D.P.; Cutroni, M.; Mandanici, A. The effect of hydrostatic pressure and temperature on the frequency dependencies of the a.c. conductivity of ionic (AgPO3) and (Ag2S)0.3(AgPO3)0.7 glasses. Solid State Ion. 1998, 109, 89–100. [Google Scholar] [CrossRef]
- Angell, C.A. Recent developments in fast ion transport in glassy and amorphous materials. Solid State Ion. 1986, 18–19, 72–88. [Google Scholar] [CrossRef]
- Wang, Y.; Sokolov, A.P. Design of superionic polymer electrolytes. Curr. Opin. Chem. Eng. 2015, 7, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, T. Elastic properties and short-to medium-range order in glass. J. Am. Ceram. Soc. 2007, 90, 3019. [Google Scholar] [CrossRef]
- Aniya, M.; Kawamura, J. Medium range structure and activation energy of ion transport in glasses. Solid State Ion. 2002, 154–155, 343–348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aniya, M.; Sadakuni, H.; Hirano, E. Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations. Crystals 2021, 11, 1008. https://doi.org/10.3390/cryst11081008
Aniya M, Sadakuni H, Hirano E. Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations. Crystals. 2021; 11(8):1008. https://doi.org/10.3390/cryst11081008
Chicago/Turabian StyleAniya, Masaru, Haruhito Sadakuni, and Eita Hirano. 2021. "Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations" Crystals 11, no. 8: 1008. https://doi.org/10.3390/cryst11081008
APA StyleAniya, M., Sadakuni, H., & Hirano, E. (2021). Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations. Crystals, 11(8), 1008. https://doi.org/10.3390/cryst11081008