Complexes of 1,3-Diisobutyl Thiourea with Copper(I), Zinc(II) and Mercury(II): Their Antioxidant and Antibacterial Evaluation
Abstract
:1. Introduction
2. Experimental Section
2.1. General and Spectroscopy
2.2. Synthesis of Compounds 1–4
2.3. Determination of Antioxidant Potentials
2.4. Antibacterial Screenings of Selected Compounds
3. Results and Discussion
3.1. General Chemistry and Spectroscopy
3.2. Structural Description of Complex 1
3.3. Structural Description of Complex 2
3.4. Free Radical Scavenging Activities of Complexes 1–4
3.5. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, F.U.; Bibi, M.; Khan, E.; Shah, A.B.; Muhammad, M.; Tahir, M.N.; Shahzad, A.; Ullah, F.; Zahoor, M.; Alamery, S.; et al. Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021, 26, 4506. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2021, 1–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Schreiner, P.R. (Thio)urea organocatalysis—What can be learnt from anion recognition? Chem. Soc. Rev. 2009, 38, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wei, Y.; Shi, M. Applications of Chiral Thiourea-Amine/Phosphine Organocatalysts in Catalytic Asymmetric Reactions. ChemCatChem 2017, 9, 718–727. [Google Scholar] [CrossRef]
- Esteban, F.; Cieślik, W.; Arpa, E.M.; Guerrero-Corella, A.; Díaz-Tendero, S.; Perles, J.; Fernandez-Salas, J.A.; Fraile, A.; Alemán, J. Intramolecular Hydrogen Bond Activation: Thiourea-Organocatalyzed Enantioselective 1,3-Dipolar Cycloaddition of Salicylaldehyde-Derived Azomethine Ylides with Nitroalkenes. ACS Catal. 2018, 8, 1884–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steppeler, F.; Iwan, D.; Wojaczyńska, E.; Wojaczyński, J. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020, 25, 401. [Google Scholar] [CrossRef] [Green Version]
- Li, A.-F.; Wang, J.-H.; Wang, F.; Jiang, Y.-B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chem. Soc. Rev. 2010, 39, 3729–3745. [Google Scholar] [CrossRef] [Green Version]
- Bregović, V.B.; Basaric, N.; Mlinarić-Majerski, K. Anion binding with urea and thiourea derivatives. Coord. Chem. Rev. 2015, 295, 80–124. [Google Scholar] [CrossRef]
- Udhayakumari, D.; Velmathi, S.; Venkatesan, P.; Wu, S.-P. Anthracene coupled thiourea as a colorimetric sensor for F−/Cu2+ and fluorescent sensor for Hg2+/picric acid. J. Lumin. 2015, 161, 411–416. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators B Chem. 2015, 208, 258–266. [Google Scholar] [CrossRef]
- Koch, K.R. New chemistry with old ligands: N-alkyl- and N,N-dialkyl-N′-acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord. Chem. Rev. 2001, 216-217, 473–488. [Google Scholar] [CrossRef]
- Saeed, A.; Qamar, R.; Fattah, T.A.; Flörke, U.; Erben, M.F. Recent developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas. Res. Chem. Intermed. 2016, 43, 3053–3093. [Google Scholar] [CrossRef]
- Reddy, V.L.; Avula, V.K.R.; Zyryanov, G.V.; Vallela, S.; Anireddy, J.S.; Pasupuleti, V.R.; Chamarthi, N.R. Hunig’s base catalyzed synthesis of new 1-(2,3-dihydro-1H-inden-1-yl)-3-aryl urea/thiourea derivatives as potent antioxidants and 2HCK enzyme growth inhibitors. Bioorganic Chem. 2020, 95, 103558. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Balónová, B.; Cinatl, J.; Wass, M.; Serpell, C.J.; Blight, B.A.; Michaelis, M. Thiourea and Guanidine Compounds and Their Iridium Complexes in Drug-Resistant Cancer Cell Lines: Structure-Activity Relationships and Direct Luminescent Imaging. ChemMedChem 2019, 15, 349–353. [Google Scholar] [CrossRef]
- Hu, H.; Lin, C.; Ao, M.; Ji, Y.; Tang, B.; Zhou, X.; Fang, M.; Zeng, J.-Z.; Wu, Z. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Adv. 2017, 7, 51640–51651. [Google Scholar] [CrossRef] [Green Version]
- Ghorab, M.M.; El-Gaby, M.; Alsaid, M.S.; Elshaier, Y.; Soliman, A.M.; Elsenduny, F.; Badria, F.A.; Sherif, A.Y. Novel Thiourea Derivatives Bearing Sulfonamide Moiety as Anticancer Agents Through COX-2 Inhibition. Anti-Cancer Agents Med. Chem. 2017, 17, 1411–1425. [Google Scholar] [CrossRef] [PubMed]
- Estévez-Hernández, O.; Duque, J.; Rodríguez-Hernández, J.; Reguera, E. Dinuclear and polymeric Hg(II) complexes with 1-(2-furoyl)thiourea derivatives: Their crystal structure and related properties. Polyhedron 2015, 97, 148–156. [Google Scholar] [CrossRef]
- Cole, J.M.; Hickstein, D.D. Molecular origins of nonlinear optical activity in zinc tris (thiourea) sulfate revealed by high-resolution x-ray diffraction data and ab initio calculations. Phys. Rev. B 2013, 88, 184105. [Google Scholar] [CrossRef]
- Shkir, M.; Ganesh, V.; AlFaify, S.; Maurya, K.K.; Vijayan, N. Effect of phenol red dye on monocrystal growth, crystalline perfection, and optical and dielectric properties of zinc (tris) thiourea sulfate. J. Appl. Crystallogr. 2017, 50, 1716–1724. [Google Scholar] [CrossRef]
- Chetana, P.; Srinatha, B.; Somashekar, M.; Policegoudra, R. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N′- disubstituted thiourea. J. Mol. Struct. 2016, 1106, 352–365. [Google Scholar] [CrossRef] [Green Version]
- Mahendiran, D.; Amuthakala, S.; Bhuvanesh, N.S.P.; Kumar, R.S.; Rahiman, A.K. Copper complexes as prospective anticancer agents: In vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Adv. 2018, 8, 16973–16990. [Google Scholar] [CrossRef] [Green Version]
- Jose, E.S.; Philip, J.E.; Shanty, A.; Kurup, M.; Mohanan, P. Novel class of mononuclear 2-methoxy-4-chromanones ligated Cu (II), Zn (II), Ni (II) complexes: Synthesis, characterisation and biological studies. Inorganica Chim. Acta 2018, 478, 155–165. [Google Scholar] [CrossRef]
- Iliş, M.; Cîrcu, V. Discotic Liquid Crystals Based on Cu (I) Complexes with Benzoylthiourea Derivatives Containing a Perfluoroalkyl Chain. J. Chem. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Khan, S.A.; Noor, A.; Kempe, R.; Subhan, H.; Shah, A.; Khan, E. Syntheses, molecular structure, and electrochemical investigations of cobalt (II), copper (II), palladium (II), and zinc (II) complexes with 3-methylpyrazole. J. Coord. Chem. 2014, 67, 2425–2434. [Google Scholar] [CrossRef]
- Khan, E.; Shahzad, A.; Tahir, M.N.; Noor, A. Antioxidant potential and secondary reactivity of bis{diphenyl(2-pyridyl)phosphino} copper (II) complex. Turk. J. Chem. 2018, 42, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Khan, E.; Gul, Z.; Shahzad, A.; Jan, M.S.; Ullah, F.; Tahir, M.N.; Noor, A. Coordination compounds of 4,5,6,7-tetrahydro-1H-indazole with Cu(II), Co(II) and Ag(I): Structural, antimicrobial, antioxidant and enzyme inhibition studies. J. Coord. Chem. 2017, 70, 4054–4069. [Google Scholar] [CrossRef]
- Gul, Z.; Din, N.U.; Khan, E.; Ullah, F.; Tahir, M.N. Synthesis, molecular structure, anti-microbial, anti-oxidant and enzyme inhibition activities of 2-amino-6-methylbenzothiazole and its Cu(II) and Ag(I) complexes. J. Mol. Struct. 2020, 1199, 126956. [Google Scholar] [CrossRef]
- Rahman, F.U.; Bibi, M.; Altaf, A.A.; Tahir, M.N.; Ullah, F.; Khan, E. Zn, Cd and Hg complexes with unsymmetric thiourea derivatives; syntheses, free radical scavenging and enzyme inhibition essay. J. Mol. Struct. 2020, 1211, 128096. [Google Scholar] [CrossRef]
- Khan, U.A.; Badshah, A.; Tahir, M.N.; Khan, E. Gold (I), silver (I) and copper (I) complexes of 2, 4, 6-trimethylphenyl-3-benzoylthiourea; synthesis and biological applications. Polyhedron 2020, 181, 114485. [Google Scholar] [CrossRef]
- Altaf, A.A.; Shahzad, A.; Gul, Z.; Khan, S.A.; Badshah, A.; Tahir, M.N.; Zafar, Z.I.; Khan, E. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea. J. Chem. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Altomare, A. A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1994, 27, 435. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Farrugia, L.J. ORTEP-3 for Windows—A version ofORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.; Khan, A.; Gul, Z.; Ullah, F.; Tahir, M.N.; Khalid, M.; Asif, H.M.; Asim, S.; Braga, A.A.C. Molecular salts of terephthalic acids with 2-aminopyridine and 2-aminothiazole derivatives as potential antioxidant agents; Base-Acid-Base type architectures. J. Mol. Struct. 2020, 1200, 127126. [Google Scholar] [CrossRef]
- Irshad, S.; Mahmood, M.; Perveen, F. In vitro antibacterial activities of three medicinal plants using agar well diffusion method. Res. J. Biol. 2012, 2, 1–8. [Google Scholar]
- Athanassiadis, B.; Abbott, P.V.; George, N.; Walsh, L.J. An in vitro study of the antimicrobial activity of some endodontic medicaments and their bases using an agar well diffusion assay. Aust. Dent. J. 2009, 54, 141–146. [Google Scholar] [CrossRef]
- Mufakkar, M.; Isab, A.A.; Rüffer, T.; Lang, H.; Ahmad, S.; Arshad, N.; Waheed, A. Synthesis, characterization, and antibacterial activities of copper (I) bromide complexes of thioureas: X-ray structure of [Cu (Metu) 4] Br. Transit. Met. Chem. 2011, 36, 505–512. [Google Scholar] [CrossRef]
- Bombicz, P.; Mutikainen, I.; Krunks, M.; Leskelä, T.; Madarász, J.; Niinistö, L. Synthesis, vibrational spectra and X-ray structures of copper(I) thiourea complexes. Inorganica Chim. Acta 2004, 357, 513–525. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Hanna, J.V.; Pakawatchai, C.; Skelton, B.; Thanyasirikul, Y.; White, A.H. Crystal Structures and Vibrational Spectroscopy of Copper (I) Thiourea Complexes. Inorg. Chem. 2009, 48, 350–368. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.R.; Vasylyeva, V.; Merz, K.; Metzler-Nolte, N.; Saleem, M.; Ali, S.; Isab, A.A.; Munawar, K.S.; Ahmad, S. Synthesis, crystal structures, antimicrobial properties and enzyme inhibition studies of zinc (II) complexes of thiones. Inorganica Chim. Acta 2011, 376, 207–211. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Zulu, N.H. Metal Complexes of Diisopropylthiourea: Synthesis, Characterization and Antibacterial Studies. Int. J. Mol. Sci. 2011, 12, 7186–7198. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Dugan, E.C.; Liaw, J.; Dembo, M.D.; Pike, R.D. Copper (I) complexes of heterocyclic thiourea ligands. Polyhedron 2009, 28, 4017–4031. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-Y.; Zhu, C.-B.; Li, H.-P.; Yang, Y.; Roesky, H.W. Synthesis and Characterization of Copper (I) Halide Complexes withN-(2, 6-Diisopropylphenyl)-N′-benzoylthiourea: Monomeric, Dimeric, and Cage Structures. Z. Für Anorg. Und Allg. Chem. 2014, 640, 1614–1621. [Google Scholar] [CrossRef]
- Jia, D.; Zhu, A.M.; Ji, M.; Zhang, Y. Copper (I) halide complexes with a sterically hindered thiourea: Synthesis and crystal structures of [Cu (dchtu) 2Cl] and [Cu (dchtu) 2Br](dchtu = N,N′-dicyclohexylthiourea). J. Coord. Chem. 2008, 61, 2307–2314. [Google Scholar] [CrossRef]
- Piro, O.E.; Piatti, R.C.V.; Bolzan, A.E.; Salvarezza, R.C.; Arvia, A.J. X-ray diffraction study of copper (I) thiourea complexes formed in sulfate-containing acid solutions. Acta Crystallogr. Sect. B Struct. Sci. 2000, 56, 993–997. [Google Scholar] [CrossRef]
- Pakawatchai, C.; Thanyasirikul, Y.; Saepae, T.; Pansook, S.; Fun, H.-K.; Chinnakali, K. Hexakis (μ-N-ethylthiourea-S) tetrakis [iodocopper (I)] Monohydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 1750–1752. [Google Scholar] [CrossRef]
- McNelis, E.; Blandino, M. 657, a method for estimating tetrahedral bond angles. New J. Chem. 2001, 25, 772–774. [Google Scholar] [CrossRef]
- Ahmad, S.; Altaf, M.; Stoeckli-Evans, H.; Rüffer, T.; Lang, H.; Mufakkar, M.; Waheed, A. Crystal Structures of Trinuclear Chlorido (N,N′-diethylthiourea) copper (I) and a Second Polymorph of Iodidotris (N,N′-diethylthiourea) copper (I). J. Chem. Crystallogr. 2010, 40, 639–645. [Google Scholar] [CrossRef]
- Fun, H.K.; Razak, I.A.; Pakawatchai, C.; Khaokong, C.H.U.A.N.P.I.T.; Chantrapromma, S.; Saithong, S.A.P.W.A.N.I.T. Tris (N,N’-diethylthiourea-S) iodocopper (I) and Tris (N,N’-diethylthiourea-S) iodosilver (I). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 453–456. [Google Scholar] [CrossRef]
- Binzet, G.; Kavak, G.; Külcü, N.; Özbey, S.; Flörke, U.; Arslan, H. Synthesis and Characterization of Novel Thiourea Derivatives and Their Nickel and Copper Complexes. J. Chem. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
Compound | 1 | 2 |
---|---|---|
Empirical formula | C36H80Cl2Cu2N8S4 | C27H60N6CuIS3 |
Formula weight | 951.30 | 755.43 |
Temperature (K) | 296 | 133 |
Crystal system | Monoclinic | Trigonal |
Space group | Cc | P-3 |
a, Å | 19.675(5) | 13.592(7) |
b, Å | 12.226(5) | 13.592(7) |
c, Å | 10.772(8) | 11.254(5) |
Β,deg | 95.04(5) | 90 |
Volume Å3 | 2581.2(13) | 1800.5(2) |
Z/Z’ | 2/0.5 | 2/0.5 |
μ (mm−1) | 1.12 | 1.66 |
F (000) | 1016 | 788 |
Wavelength (Å) | 0.71069 | 0.71069 |
Diffractometer | STOE-IPDSII | STOE-IPDSII |
θmin-θmax, deg | 1.963–26.240 | 1.730–26.174 |
Range of indices | −24 ≤ h ≤ 24 | −16 ≤ h ≤ 16 |
−15 ≤ k ≤ 15 | −16 ≤ k ≤ 16 | |
−13 ≤ l ≤ 13 | −13 ≤ l ≤ 13 | |
Total number of reflections | 17780 | 25350 |
Rint | 0.123 | 0.048 |
Completeness of data to θmax, % | 99.4 | 99.7 |
Tmax/Tmin | None | 0.813/0.915 |
Number of observed reflections (I > 2σ(I)) | 2450 | 2238 |
Number of refined parameters | 243 | 127 |
Goodness of Fit | 0.844 | 1.088 |
Crystal size | 0.26 × 0.19 × 0.14 | 0.28 × 0.27 × 0.13 |
R ((I > 2σ(I)) | R1 = 0.0586 wR2 = 0.1176 | R1 = 0.0279 wR2 = 0.0683 |
R for all reflections | R1 = 0.1411 wR2 = 0.1418 | R1 = 0.0301 wR2 = 0.0713 |
Residual electron density (max/min), (e/Å3) | 0.46/−0.39 | 0.80/−0.59 |
Compound | Atoms | Bond Length | Atoms | Angles |
---|---|---|---|---|
1 | Cu1-S2 | 2.213(4) | S2-Cu1-S1 | 115.76(13) |
Cu1-S1 | 2.216(3) | S2-Cu1-Cl | 123.30(12) | |
Cu1-Cl | 2.272(3) | S1-Cu1-Cl | 120.94(11) | |
S1-C1 | 1.736(12) | N3-C1-N4 | 121.4(10) | |
N3-C1 | 1.306(14) | N3-C1-S1 | 120.5(9) | |
N4-C1 | 1.349(14) | N4-C1-S1 | 118.0(8) | |
N2-C11 | 1.342(15) | N1-C11-N2 | 117.6(10) | |
N1-C11 | 1.337(14) | N1-C11-S2 | 122.1(10) | |
2 | I1-Cu1 | 2.610(5) | S1-Cu1-S1 | 100.32(2) |
Cu1-S1 | 2.336(6) | S1-Cu1-I1 | 117.55(16) | |
S1-C1 | 1.713(2) | C1-S1-Cu1 | 112.72(7) | |
N1-C1 | 1.329(3) | N1-C1-N2 | 118.08(19) | |
N1-C2 | 1.456(3) | N1-C1-S1 | 120.88(19) | |
N2-C1 | 1.335(3) | N2-C1-S1 | 120.03(16) | |
N2-C6 | 1.456(3) |
Concentration (ppm) | 1 | 2 | 3 | 4 |
---|---|---|---|---|
20 | 63.6 | 5.2 | 9.4 | 6.5 |
40 | 66.7 | 13.7 | 16.8 | 12.5 |
60 | 74.9 | 18.2 | 18.2 | 15.6 |
80 | 78.2 | 19.2 | 27.9 | 16.0 |
100 | 79.9 | 19.5 | 29.3 | 19.2 |
Bacterial Strain | 1 | 2 | 3 | 4 | Cephradine |
---|---|---|---|---|---|
E. coli | 10.0 | 8.0 | 9.2 | 11.0 | 12.01 |
S. typhi | 7.5 | 6.2 | 8.0 | 10.5 | 13.02 |
S. flexenari | 9.0 | 7.5 | 8.7 | 11.2 | 14.50 |
P. aeruginosa | 13.25 | 10.5 | 6.25 | 8.0 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, A.; Khan, E.; Said, M.; Khan, G.S.; Syed, M.G.; Noor, A.; Zahoor, M.; Ullah, R.; Bari, A. Complexes of 1,3-Diisobutyl Thiourea with Copper(I), Zinc(II) and Mercury(II): Their Antioxidant and Antibacterial Evaluation. Crystals 2021, 11, 989. https://doi.org/10.3390/cryst11080989
Shahzad A, Khan E, Said M, Khan GS, Syed MG, Noor A, Zahoor M, Ullah R, Bari A. Complexes of 1,3-Diisobutyl Thiourea with Copper(I), Zinc(II) and Mercury(II): Their Antioxidant and Antibacterial Evaluation. Crystals. 2021; 11(8):989. https://doi.org/10.3390/cryst11080989
Chicago/Turabian StyleShahzad, Adnan, Ezzat Khan, Muhammad Said, Gul Shazada Khan, Mian Gul Syed, Awal Noor, Muhammad Zahoor, Riaz Ullah, and Ahmed Bari. 2021. "Complexes of 1,3-Diisobutyl Thiourea with Copper(I), Zinc(II) and Mercury(II): Their Antioxidant and Antibacterial Evaluation" Crystals 11, no. 8: 989. https://doi.org/10.3390/cryst11080989
APA StyleShahzad, A., Khan, E., Said, M., Khan, G. S., Syed, M. G., Noor, A., Zahoor, M., Ullah, R., & Bari, A. (2021). Complexes of 1,3-Diisobutyl Thiourea with Copper(I), Zinc(II) and Mercury(II): Their Antioxidant and Antibacterial Evaluation. Crystals, 11(8), 989. https://doi.org/10.3390/cryst11080989