The Fluidization Effect of a Bilayer Membrane on a Fatty Acid Vesicle by a Detergent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of OA/Detergent Bicelles
2.2. Evaluation of the Morphology of OA/Detergent Bicelles
2.3. Evaluation of the Packing Density in OA/Detergent Bicelles
3. Results and Discussion
3.1. Morphology of OA/Detergent Bicelles
3.2. Packing Density of OA/Detergent Bicelles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez, B.; Bulsara, P.; Rawlings, A.V.; Wei, W.; Jensen, M.M.; Wang, Z.; Dickens, J.; Zhang, S.; Elliot, R.P.; Glasius, M.; et al. Ultralong fatty acyl derivatives as occlusive structure lipids for cosmetic applications: Synthesis and characterization. ACS Sustain. Chem. Eng. 2016, 4, 7137–7146. [Google Scholar] [CrossRef]
- Prakash, A.; Zhu, H.; Jones, C.J.; Benoit, D.N.; Ellsworth, A.Z.; Bryant, E.L.; Colvin, V.L. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 2009, 3, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Sut, T.N.; Jackman, J.A.; Cho, N.-J. Understanding how membrane surface charge influences lipid bicelle adsorption onto oxide surfaces. Langmuir 2019, 35, 8436–8444. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, S.; Kang, B.-S.; Suga, K.; Okamoto, Y.; Jung, H.-S.; Umakoshi, H. A novel method of vesicle preparation by simple dilution of bicelle solution. Biochem. Eng. J. 2020, 162, 107725. [Google Scholar] [CrossRef]
- Yamamoto, K.; Soong, R.; Ramamoorthy, A. Comprehensive analysis of lipid dynamics variation with lipid composition and hydration of bicelles using nuclear magnetic resonance (NMR) spectroscopy. Langmuir 2009, 25, 7010–7018. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, S.; Suga, K.; Hayashi, K.; Okamoto, Y.; Jung, H.-S.; Nakamura, H.; Umakoshi, H. Systematic characterization of DMPC/DHPC self-assemblies and their phase behaviors in aqueous solution. Coll. Interfaces 2018, 2, 73. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.; Situ, A.J.; Ulmer, T.S. Direct evaluation of protein–lipid contacts reveals protein membrane immersion and isotropic bicelle structure. J. Phys. Chem. Lett. 2016, 7, 4420–4426. [Google Scholar] [CrossRef]
- Mineev, K.S.; Nadezhdin, K.D.; Goncharuk, S.A.; Arseniev, A.S. Characterization of small isotropic bicelles with various compositions. Langmuir 2016, 32, 6624–6637. [Google Scholar] [CrossRef]
- Lu, H.; Shi, Q.; Huang, Z. pH-responsive anionic wormlike micelle based on sodium oleate induced by NaCl. J. Phys. Chem. B 2014, 118, 12511–12517. [Google Scholar] [CrossRef] [PubMed]
- Hernell, O.; Staggers, J.E.; Carey, M.C. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 1990, 29, 2041–2056. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, A.; Garidel, P.; Neubert, R.; Blume, A. Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir 2004, 20, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Suys, E.J.A.; Warren, D.B.; Porter, C.J.H.; Benameur, H.; Pouton, C.W.; Chalmers, D.K. Computational models of the intestinal environment. 3. The impact of cholesterol content and pH on mixed micelle colloids. Mol. Pharm. 2017, 14, 3684–3697. [Google Scholar] [CrossRef]
- Taguchi, S.; Kimura, Y.; Tachibana, Y.; Yamamoto, T.; Umakoshi, H. Preparation of bilayer molecular assembly from fatty acid and detergent. Kagaku Kogaku Ronbunshu 2021, 47, 51–56. [Google Scholar] [CrossRef]
- Salentinig, S.; Sagalowicz, L.; Glatter, O. Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir 2010, 26, 11670–11679. [Google Scholar] [CrossRef] [PubMed]
- Rodi, P.M.; Bocco Gianello, M.D.; Corregido, M.C.; Gennaro, A.M. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane. Biochim. Biophys. Acta—Biomembr. 2014, 1838, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wu, J.; Heberle, F.A.; Mills, T.T.; Klawitter, P.; Huang, G.; Costanza, G.; Feigenson, G.W. Phase studies of model biomembranes: Complex behavior of DSPC/DOPC/cholesterol. Biochim. Biophys. Acta—Biomembr. 2007, 1768, 2764–2776. [Google Scholar] [CrossRef] [Green Version]
- Uppamoochikkal, P.; Tristram-Nagle, S.; Nagle, J.F. Orientation of tie-lines in the phase diagram of DOPC/DPPC/cholesterol model biomembranes. Langmuir 2010, 26, 17363–17368. [Google Scholar] [CrossRef] [Green Version]
- Suga, K.; Otsuka, Y.; Okamoto, Y.; Umakoshi, H. Gel-phase-like ordered membrane properties observed in dispersed oleic acid/1-oleoylglycerol self-assemblies: Systematic characterization using Raman spectroscopy and a Laurdan fluorescent probe. Langmuir 2018, 34, 2081–2088. [Google Scholar] [CrossRef]
- Iwasaki, F.; Luginbühl, S.; Suga, K.; Walde, P.; Umakoshi, H. Fluorescent probe study of AOT vesicle membranes and their alteration upon addition of aniline or the aniline dimer p--aminodiphenylamine (PADPA). Langmuir 2017, 33, 1984–1994. [Google Scholar] [CrossRef]
- Giacomelli, C.E.; Vermeer, A.W.P.; Norde, W. Micellization and Adsorption Characteristics of CHAPS. Langmuir 2000, 16, 4853–4858. [Google Scholar] [CrossRef]
- Pantaler, E.; Kamp, D.; Haest, C.W.M. Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. Biochim. Biophys. Acta—Biomembr. 2000, 1509, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Schubert, R.; Beyer, K.; Wolburg, H.; Schmidt, K.-H. Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate. Biochemistry 1986, 25, 5263–5269. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taguchi, S.; Kimura, Y.; Tachibana, Y.; Yamamoto, T.; Maeda, K. The Fluidization Effect of a Bilayer Membrane on a Fatty Acid Vesicle by a Detergent. Crystals 2021, 11, 1023. https://doi.org/10.3390/cryst11091023
Taguchi S, Kimura Y, Tachibana Y, Yamamoto T, Maeda K. The Fluidization Effect of a Bilayer Membrane on a Fatty Acid Vesicle by a Detergent. Crystals. 2021; 11(9):1023. https://doi.org/10.3390/cryst11091023
Chicago/Turabian StyleTaguchi, Shogo, Yuta Kimura, Yasuaki Tachibana, Takuji Yamamoto, and Kouji Maeda. 2021. "The Fluidization Effect of a Bilayer Membrane on a Fatty Acid Vesicle by a Detergent" Crystals 11, no. 9: 1023. https://doi.org/10.3390/cryst11091023
APA StyleTaguchi, S., Kimura, Y., Tachibana, Y., Yamamoto, T., & Maeda, K. (2021). The Fluidization Effect of a Bilayer Membrane on a Fatty Acid Vesicle by a Detergent. Crystals, 11(9), 1023. https://doi.org/10.3390/cryst11091023