Visible Light Communication System Technology Review: Devices, Architectures, and Applications
Abstract
:1. Introduction
2. VLC Transmitter Light Source
2.1. Theoretical Background of LED for VLC Application
2.2. Theoretical Background of Laser for VLC Application
2.2.1. Edge Emitting Laser Diodes (EELDs)
2.2.2. Super Luminescent Diodes (SLDs)
2.2.3. Vertical Cavity Emitter Lasers (VSCELs)
3. VLC Receiver Technology
- The wavelength has a sufficiently high responsivity. For a certain incident optical power, the output photocurrent can be as large as possible.
- Fast enough response speeds to be implemented to a high-speed broadband system.
- A sufficiently fast response speed can be applied to high-speed broadband systems. The noise level must be as low as possible to reduce the impact on the device’s signal.
- According to a good linear relationship, the signal conversion process has been guaranteed to spread without distortion.
- Small size and has a long service lifetime.
4. Modulation Technology in VLC System
- Dimming:
- Flicker reduction:
- Multilevel pulse amplitude modulation (M-PAM)
- Phase shift keying (PSK) modulation
- M-ary quadrature amplitude modulation (M-QAM)
- Orthogonal frequency division modulation (OFDM)
- Color shift keying (CSK) modulation
4.1. Multilevel Pulse Amplitude Modulation (M-PAM) Technique
4.2. Phase Shift Keying (PSK) Modulation Technique
4.3. M-Ary Quadrature Amplitude Modulation (QAM) Technique
4.4. Orthogonal Frequency Division Modulation (OFDM) Technique
4.5. Color Shift Keying (CSK) Modulation Technique
4.6. Power Requirements and Spectrum Efficiency
5. Optical Wireless Communication Standards
- Integration of VLC system with existing communication standards.
- Ambient light source interference problem.
- VLC should properly consider mobility issues such as handover.
- Specification of a forward error correction plan to improve communication system performance.
- Establish access to hundreds of terahertz frequency bands.
- Establish anti-electromagnetic interference capability.
- Communication of additional services that supplement the current visible light equipment.
- VLC communication that specifies a forward error correction (FEC) scheme, modulation form, and transmission rate.
- Channel access mechanism, as visibility support also describes channel access, and contention access period (CAP) and contention-free period (CFP).
- Physical layer specifications, such as optical mapping, TX-RX, RX-TX turnaround time, flicker, and dimming relief. IEEE 802.15.7 is new product development standard.
6. VLC Application
6.1. Li-Fi
6.2. Vehicle to Vehicle Communication
6.3. Underwater Communication
6.4. Information Displaying Signboards
6.5. Visible Light ID and Position System
6.6. Wireless Local Area Networks (WLANs)
7. Challenges
- Bandwidth limitation of the light source.
- Si-based detectors are mainly sensitive to infrared waves.
- Point-to-Point communication based on a single transmitter and detector.
- Transmission and reception antennas require a large lens group.
7.1. Bandwidth Limitation of the Light Source
7.2. Si-Based Detectors Are Mainly Sensitive to Infrared Waves
7.3. Point-to-Point Communication Based on a Single Transmitter and Detector
7.4. Transmission and Reception Antennas Require a Large Lens Group
8. Quantum Communication
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED Based Indoor Visible Light Communications: State of the Art. IEEE Commun. Surv. Tutor. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Hussain, B.; Li, X.; Che, F.; Yue, C.P.; Wu, L. Visible Light Communication System Design and Link Budget Analysis. J. Lightwave Technol. 2015, 33, 5201–5209. [Google Scholar] [CrossRef]
- Ismail, S.N.; Salih, M.H. A review of visible light communication (VLC) technology. AIP Conf. Proc. 2020, 2213, 020289. [Google Scholar] [CrossRef]
- Sindhubala, K.; Vijayalakshmi, B. Design and implementation of visible light communication system in indoor environment. ARPN J. Eng. Appl. Sci. 2015, 10, 2882–2886. [Google Scholar]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Wu, Y.; Thompson, J.; Haas, H. A Survey of Positioning Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018, 20, 1963–1988. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.-H.; Huang, W.-T. Asymmetrical bidirectional optical wireless communication system based on a transmissive 1D LC-SLM for NG-PON2. Opt. Lett. 2020, 45, 4543–4546. [Google Scholar] [CrossRef]
- Muthu, S.; Schuurmans, F.J.; Pashley, M.D. Red, green, and blue LEDs for white light illumination. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Wong, S.; Tse, C.K. Temperature Measurement Technique for Stabilizing the Light Output of RGB LED Lamps. IEEE Trans. Instrum. Meas. 2010, 59, 661–670. [Google Scholar] [CrossRef]
- Minh, H.L.; Brien, D.O.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. 100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED. IEEE Photonics Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Liu, Y.-L.; Chow, C.-W. Real-time white-light phosphor-LED visible light communication (VLC) with compact size. Opt. Express 2013, 21, 26192–26197. [Google Scholar] [CrossRef]
- Vučić, J.; Kottke, C.; Nerreter, S.; Langer, K.-D.; Walewski, J.W. 513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED. J. Lightwave Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Khalid, A.M.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation. IEEE Photonics J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Chen, Z.Y.; Huang, H.T.; Chi, S. Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication. IEEE Photonics J. 2013, 5, 7901507. [Google Scholar] [CrossRef]
- Green, R.P.; McKendry, J.J.D.; Massoubre, D.; Gu, E.; Dawson, M.D.; Kelly, A.E. Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes. Appl. Phys. Lett. 2013, 102, 091103. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Zhang, B.; Lin, J.Y.; Jiang, H.X. Comparison of optical transitions in InGaN quantum well structures and microdisks. J. Appl. Phys. 2001, 89, 4951–4954. [Google Scholar] [CrossRef]
- Choi, H.W.; Jeon, C.W.; Dawson, M.D.; Edwards, P.R.; Martin, R.W.; Tripathy, S. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. J. Appl. Phys. 2003, 93, 5978–5982. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Chi, N.; Yu, J.; Shang, H. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Opt. Express 2013, 21, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-Y.; Chen, C.-Y.; Lu, H.-H.; Chang, C.-H.; Lin, Y.-P.; Lin, H.-C.; Wu, H.-W. 10m/500Mbps WDM visible light communication systems. Opt. Express 2012, 20, 9919–9924. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Tan, M.; Najda, S.P.; Perlin, P.; Leszczynski, M.; Targowski, G.; Grzanka, S.; Kelly, A.E. Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 2013, 38, 3792–3794. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Wu, P.-Y.; Lu, H.-H.; Lin, Y.-P.; Wen, J.-Y.; Hu, F.-C. Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport. Opt. Lett. 2013, 38, 2345–2347. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.-C.; Hsieh, D.-H.; Tsai, C.-T.; Chen, H.-Y.; Kuo, H.-C.; Lin, G.-R. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Express 2015, 23, 13051–13059. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Shen, C.; Oubei, H.M.; Cantore, M.; Janjua, B.; Ng, T.K.; Farrell, R.M.; El-Desouki, M.M.; Speck, J.S.; Nakamura, S.; et al. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Opt. Express 2015, 23, 29779–29787. [Google Scholar] [CrossRef] [PubMed]
- Retamal, J.R.D.; Oubei, H.M.; Janjua, B.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Ng, T.K.; Hsieh, D.-H.; Kuo, H.-C.; Alouini, M.-S.; et al. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. Opt. Express 2015, 23, 33656–33666. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.-C.; Hsieh, D.-H.; Lin, C.-Y.; Chen, H.-Y.; Huang, C.-Y.; He, J.-H.; Ooi, B.; DenBaars, S.P.; Nakamura, S.; Kuo, H.-C.; et al. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication. Sci. Rep. 2015, 5, 18690. [Google Scholar] [CrossRef] [Green Version]
- Tsonev, D.; Videv, S.; Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 2015, 23, 1627–1637. [Google Scholar] [CrossRef]
- Wu, T.-C.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Huang, Y.-F.; Lin, G.-R. Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-T.; Cheng, C.-H.; Kuo, H.-C.; Lin, G.-R. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron. 2019, 67, 100225. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, R.-S. Advances in Phosphors for Light-emitting Diodes. J. Phys. Chem. Lett. 2011, 2, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Kavehrad, M. Effect of white LED DC-bias on modulation speed for visible light communications. arXiv 2016, arXiv:1612.08477. [Google Scholar]
- Zhu, S.; Lin, S.; Li, J.; Yu, Z.; Cao, H.; Yang, C.; Li, J.; Zhao, L. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs. Appl. Phys. Lett. 2017, 111, 171105. [Google Scholar] [CrossRef]
- Ryou, J.-H.; Lee, W.; Limb, J.; Yoo, D.; Liu, J.P.; Dupuis, R.D.; Wu, Z.H.; Fischer, A.M.; Ponce, F.A. Control of quantum-confined Stark effect in InGaN∕GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes. Appl. Phys. Lett. 2008, 92, 101113. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, R.M.; Hou, Y.; Xu, B.; Gong, Y.; Bai, J.; Wang, T. Stokes shift in semi-polar (112−2) InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2016, 108, 031108. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Physica Status Solidi A 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Kozlowski, G.; Schulz, S.; Corbett, B. Polarization matching design of InGaN-based semi-polar quantum wells—A case study of (112−2) orientation. Appl. Phys. Lett. 2014, 104, 051128. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-W.H.; Huang, Y.-M.; Singh, K.J.; Hsu, Y.-C.; Liou, F.-J.; Song, J.; Choi, J.; Lee, P.-T.; Lin, C.-C.; Chen, Z.; et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photon. Res. 2020, 8, 630–636. [Google Scholar] [CrossRef]
- Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; et al. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells. J. Appl. Phys. 2014, 116, 093517. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 83. [Google Scholar] [CrossRef]
- Okur, S.; Nami, M.; Rishinaramangalam, A.K.; Oh, S.H.; DenBaars, S.P.; Liu, S.; Brener, I.; Feezell, D.F. Internal quantum efficiency and carrier dynamics in semipolar (20-2-1) InGaN/GaN light-emitting diodes. Opt. Express 2017, 25, 2178–2186. [Google Scholar] [CrossRef]
- Liao, C.; Chang, Y.; Ho, C.; Wu, M. High-Speed GaN-Based Blue Light-Emitting Diodes with Gallium-Doped ZnO Current Spreading Layer. IEEE Electron. Device Lett. 2013, 34, 611–613. [Google Scholar] [CrossRef]
- Liao, C.; Ho, C.; Chang, Y.; Wu, C.; Wu, M. High-Speed Light-Emitting Diodes Emitting at 500 nm with 463-MHz Modulation Bandwidth. IEEE Electron. Device Lett. 2014, 35, 563–565. [Google Scholar] [CrossRef]
- McKendry, J.J.D.; Massoubre, D.; Zhang, S.; Rae, B.R.; Green, R.P.; Gu, E.; Henderson, R.K.; Kelly, A.E.; Dawson, M.D. Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array. J. Lightwave Technol. 2012, 30, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Wun, J.; Lin, C.; Chen, W.; Sheu, J.; Lin, C.; Li, Y.; Bowers, J.E.; Shi, J.; Vinogradov, J.; Kruglov, R.; et al. GaN-Based Miniaturized Cyan Light-Emitting Diodes on a Patterned Sapphire Substrate with Improved Fiber Coupling for Very High-Speed Plastic Optical Fiber Communication. IEEE Photonics J. 2012, 4, 1520–1529. [Google Scholar] [CrossRef]
- Shi, J.; Chi, K.; Wun, J.; Bowers, J.E.; Shih, Y.; Sheu, J. III-Nitride-Based Cyan Light-Emitting Diodes with GHz Bandwidth for High-Speed Visible Light Communication. IEEE Electron. Device Lett. 2016, 37, 894–897. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Aragon, A.A.; Nami, M.; Oh, S.H.; DenBaars, S.P.; Feezell, D. Trade-off between bandwidth and efficiency in semipolar (202¯1¯) InGaN/GaN single- and multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 2018, 112, 191102. [Google Scholar] [CrossRef]
- Lefebvre, P.; Allègre, J.; Mathieu, H. Recombination dynamics of excitons in III-nitride layers and quantum wells. Mater. Sci. Eng. B 1999, 59, 307–314. [Google Scholar] [CrossRef]
- Malinauskas, T.; Miasojedovas, S.; Aleksiejūnas, R.; Juršėnas, S.; Jarašiūnas, K.; Nomura, M.; Arakawa, Y.; Shimura, T.; Kuroda, K. Direct study of nonlinear carrier recombination in InGaN quantum well structures. Physica Status Solidi C 2011, 8, 2381–2383. [Google Scholar] [CrossRef]
- Mickevičius, J.; Tamulaitis, G.; Kuokštis, E.; Liu, K.; Shur, M.S.; Zhang, J.P.; Gaska, R. Well-width-dependent carrier lifetime in AlGaN∕AlGaN quantum wells. Appl. Phys. Lett. 2007, 90, 131907. [Google Scholar] [CrossRef]
- Huang, S.; Xian, Y.; Fan, B.; Zheng, Z.; Chen, Z.; Jia, W.; Jiang, H.; Wang, G. Contrary luminescence behaviors of InGaN/GaN light emitting diodes caused by carrier tunneling leakage. J. Appl. Phys. 2011, 110, 064511. [Google Scholar] [CrossRef]
- Li, Y.-L.; Huang, Y.-R.; Lai, Y.-H. Efficiency droop behaviors of InGaN∕GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl. Phys. Lett. 2007, 91, 181113. [Google Scholar] [CrossRef] [Green Version]
- James Singh, K.; Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Huang Chen, S.-W.; Liou, F.-J.; Wu, T.; Lin, C.-C.; Chow, C.-W.; Lin, G.-R.; et al. Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [Google Scholar] [CrossRef]
- Choi, H.W.; Liu, C.; Gu, E.; McConnell, G.; Girkin, J.M.; Watson, I.M.; Dawson, M.D. GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Appl. Phys. Lett. 2004, 84, 2253–2255. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-Y.; Sher, C.-W.; Hsieh, D.-H.; Chen, X.-Y.; Chen, H.-M.P.; Chen, T.-M.; Lau, K.-M.; Chen, C.-H.; Lin, C.-C.; Kuo, H.-C. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photon. Res. 2017, 5, 411–416. [Google Scholar] [CrossRef]
- Shi, J.; Sheu, J.; Chen, C.; Lin, G.; Lai, W. High-Speed GaN-Based Green Light-Emitting Diodes with Partially n-Doped Active Layers and Current-Confined Apertures. IEEE Electron. Device Lett. 2008, 29, 158–160. [Google Scholar] [CrossRef]
- Kelly, A.E.; McKendry, J.J.D.; Zhang, S.; Massoubre, D.; Rae, B.R.; Green, R.P.; Henderson, R.K.; Dawson, M.D. High-speed GaN micro-LED arrays for data communications. In Proceedings of the 2012 14th International Conference on Transparent Optical Networks (ICTON), Coventry, UK, 2–5 July 2012; pp. 1–5. [Google Scholar]
- Corbett, B.; Quan, Z.; Dinh, D.V.; Kozlowski, G.; O’Mahony, D.; Akhter, M.; Schulz, S.; Parbrook, P.; Maaskant, P.; Caliebe, M.; et al. Development of Semipolar (11–22) LEDs on GaN Templates; SPIE: Bellingham, DC, USA, 2016; Volume 9768. [Google Scholar]
- Li, J.; Gou, P.; Chi, N.; Ou, H. Enhanced Emission and Modulation Properties of Localized Surface Plasma Coupled GaN-based Green Light-Emitting Diodes. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11 March 2018. paper Th2A.65. [Google Scholar]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth. IEEE Electron. Device Lett. 2018, 39, 520–523. [Google Scholar] [CrossRef]
- Khoury, M.; Li, H.; Li, P.; Chow, Y.C.; Bonef, B.; Zhang, H.; Wong, M.S.; Pinna, S.; Song, J.; Choi, J.; et al. Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy 2020, 67, 104236. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Chang, Y.-H.; Lin, Y.; Liou, F.-J.; Hsu, Y.-C.; Song, J.; Choi, J.; Chow, C.-W.; Lin, C.-C.; et al. High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Haggar, J.I.H.; Cai, Y.; Ghataora, S.S.; Smith, R.M.; Bai, J.; Wang, T. High Modulation Bandwidth of Semipolar (11–22) InGaN/GaN LEDs with Long Wavelength Emission. ACS Appl. Electron. Mater. 2020, 2, 2363–2368. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Z.; Li, M.; Wang, L.; Liu, Z.; Yu, C.; Wang, L.; Luo, Y.; Fu, H.Y. Experimental investigation of 16.6 Gbps SDM-WDM visible light communication based on a neural network receiver and tricolor mini-LEDs. Opt. Lett. 2021, 46, 2888–2891. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Chen, C.-J.; Chen, K.-C.; Hao, Z.; Luo, Y.; Sun, C.; Wu, M.-C.; Yu, J.; Han, Y.; et al. Green InGaN Quantum Dots Breaking through Efficiency and Bandwidth Bottlenecks of Micro-LEDs. Laser Photonics Rev. 2021, 15, 2000406. [Google Scholar] [CrossRef]
- Shen, C. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications. In Proceedings of the Light, Energy and the Environment, Boulder, CO, USA, 6 November 2017. paper SW3C.2. [Google Scholar]
- Nakamura, S.; Chichibu, S.F. Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Shamim, M.H.M.; Shemis, M.A.; Shen, C.; Oubei, H.M.; Ng, T.K.; Ooi, B.S.; Khan, M.Z.M. Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication. IEEE Photonics J. 2018, 10, 7905611. [Google Scholar] [CrossRef]
- Mukhtar, S.; Xiaobin, S.; Ashry, I.; Ng, T.K.; Ooi, B.S.; Khan, M.Z.M. Tunable Violet Laser Diode System for Optical Wireless Communication. IEEE Photonics Technol. Lett. 2020, 32, 546–549. [Google Scholar] [CrossRef]
- Holguin-Lerma, J.A.; Kong, M.; Alkhazragi, O.; Sun, X.; Khee Ng, T.; Ooi, B.S. 480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. Opt. Lett. 2020, 45, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Denault, K.A.; Cantore, M.; Nakamura, S.; DenBaars, S.P.; Seshadri, R. Efficient and stable laser-driven white lighting. AIP Adv. 2013, 3, 072107. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek Jr., R. F. Toward Smart and Ultra-efficient Solid-State Lighting. Adv. Opt. Mater. 2014, 2, 809–836. [Google Scholar] [CrossRef]
- SLD Laser Technology and Applications. Available online: https://www.displaydaily.com/article/display-daily/sld-laser-technology-and-applications (accessed on 20 July 2021).
- Lee, C.; Islim, M.S.; Videv, S.; Sparks, A.; Shah, B.; Rudy, P.; McLaurin, M.; Haas, H.; Raring, J. Advanced LiFi Technology: Laser Light; SPIE: Bellingham, DC, USA, 2020; Volume 11302. [Google Scholar]
- Rossetti, M.; Napierala, J.; Matuschek, N.; Achatz, U.; Duelk, M.; Vélez, C.; Castiglia, A.; Grandjean, N.; Dorsaz, J.; Feltin, E. Superluminescent Light Emitting Diodes: The Best out of Two Worlds; SPIE: Bellingham, DC, USA, 2012; Volume 8252. [Google Scholar]
- Hu, F.; Holguin-Lerma, J.; Mao, Y.; Shen, C.; Sun, X.; Kong, M.; Ng, T.K.; Ooi, B.; Chi, N. 3.8-Gbit/s Visible Light Communication (VLCa) Based on 443-nm Superluminescent Diode and Bit-Loading Discrete-Multiple-Tone (DMT) Modulation Scheme; SPIE: Bellingham, DC, USA, 2020; Volume 11307. [Google Scholar]
- Kopp, F.; Eichler, C.; Lell, A.; Tautz, S.; Ristić, J.; Stojetz, B.; Höß, C.; Weig, T.; Schwarz, U.T.; Strauss, U. Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection. Jpn. J. Appl. Phys. 2013, 52, 08JH07. [Google Scholar] [CrossRef]
- Shen, C.; Ng, T.K.; Leonard, J.T.; Pourhashemi, A.; Nakamura, S.; DenBaars, S.P.; Speck, J.S.; Alyamani, A.Y.; El-desouki, M.M.; Ooi, B.S. High-brightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Opt. Lett. 2016, 41, 2608–2611. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Leonard, J.T.; Young, E.C.; Ng, T.K.; DenBaars, S.P.; Speck, J.S.; Nakamura, S.; Alyamani, A.Y.; El-Desouki, M.M.; Ooi, B.S. GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2016, 5–10 June 2016; pp. 1–2. [Google Scholar]
- Sarzała, R.P.; Śpiewak, P.; Nakwaski, W.; Wasiak, M. Cavity designs for nitride VCSELs with dielectric DBRs operating efficiently at different temperatures. Opt. Laser Technol. 2020, 132, 106482. [Google Scholar] [CrossRef]
- Hsu, C.; Chow, C.; Lu, I.; Liu, Y.; Yeh, C.; Liu, Y. High Speed Imaging 3 × 3 MIMO Phosphor White-Light LED Based Visible Light Communication System. IEEE Photonics J. 2016, 8, 7907406. [Google Scholar] [CrossRef]
- Cossu, G.; Khalid, A.M.; Choudhury, P.; Corsini, R.; Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 2012, 20, B501–B506. [Google Scholar] [CrossRef]
- Lu, I.C.; Lai, C.-H.; Yeh, C.-H.; Chen, J. 6.36 Gbit/s RGB LED-based WDM MIMO Visible Light Communication System Employing OFDM Modulation. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 19 March 2017. paper W2A.39. [Google Scholar]
- Chi, N.; Zhang, M.; Zhou, Y.; Zhao, J. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding. Opt. Express 2016, 24, 21663–21673. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, F.; Shi, M.; Chi, N.; Liu, J.; Jiang, F. 10.72Gb/s Visible Light Communication System Based on Single Packaged RGBYC LED Utilizing QAM-DMT Modulation with Hardware Pre-Equalization. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11 March 2018. paper M3K.3. [Google Scholar]
- Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J.J.D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G.; et al. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED. IEEE Photonics Technol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H.; et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- He, X.; Xie, E.; Islim, M.S.; Purwita, A.A.; McKendry, J.J.D.; Gu, E.; Haas, H.; Dawson, M.D. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photon. Res. 2019, 7, B41–B47. [Google Scholar] [CrossRef]
- Chang, C.-H.; Li, C.-Y.; Lu, H.-H.; Lin, C.-Y.; Chen, J.-H.; Wan, Z.-W.; Cheng, C.-J. A 100-Gb/s Multiple-Input Multiple-Output Visible Laser Light Communication System. J. Lightwave Technol. 2014, 32, 4121–4127. [Google Scholar] [CrossRef]
- Lee, C.; Zhang, C.; Cantore, M.; Farrell, R.M.; Oh, S.H.; Margalith, T.; Speck, J.S.; Nakamura, S.; Bowers, J.E.; DenBaars, S.P. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express 2015, 23, 16232–16237. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Chi, Y.-C.; Kao, H.-Y.; Tsai, C.-T.; Wang, H.-Y.; Kuo, H.-C.; Nakamura, S.; Huang, D.-W.; Lin, G.-R. Blue Laser Diode Based Free-space Optical Data Transmission elevated to 18 Gbps over 16 m. Sci. Rep. 2017, 7, 10478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.-C.; Wang, H.-Y.; Lin, G.-R. Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s. Sci. Rep. 2018, 8, 13142. [Google Scholar] [CrossRef]
- Lu, I.; Yeh, C.; Hsu, D.; Chow, C. Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC Wireless Communication. IEEE Photonics J. 2016, 8, 7904106. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Wei, L.-Y.; Chow, C.-W. Using a Single VCSEL Source Employing OFDM Downstream Signal and Remodulated OOK Upstream Signal for Bi-directional Visible Light Communications. Sci. Rep. 2017, 7, 15846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Chow, C.; Hsu, C.; Yeh, C. Bidirectional Visible Light Communication System Using a Single VCSEL With Predistortion to Enhance the Upstream Remodulation. IEEE Photonics J. 2018, 10, 7903407. [Google Scholar] [CrossRef]
- Yeh, C.; Chow, C.; Wei, L. 1250 Mbit/s OOK Wireless White-Light VLC Transmission Based on Phosphor Laser Diode. IEEE Photonics J. 2019, 11, 7903205. [Google Scholar] [CrossRef]
- Lee, C.; Shen, C.; Cozzan, C.; Farrell, R.M.; Speck, J.S.; Nakamura, S.; Ooi, B.S.; DenBaars, S.P. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt. Express 2017, 25, 17480–17487. [Google Scholar] [CrossRef]
- Wei, L.-Y.; Chow, C.-W.; Liu, Y.; Yeh, C.-H. Multi-Gbit/s phosphor-based white-light and blue-filter-free visible light communication and lighting system with practical transmission distance. Opt. Express 2020, 28, 7375–7381. [Google Scholar] [CrossRef]
- Wei, L.-Y.; Liu, Y.; Chow, C.-W.; Chen, G.-H.; Peng, C.-W.; Guo, P.-C.; Tsai, J.-F.; Yeh, C.-H. 6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance. Electron. Lett. 2020, 56, 945–947. [Google Scholar] [CrossRef]
- Wei, L.-Y.; Hsu, C.-W.; Chow, C.-W.; Yeh, C.-H. 20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photon. Res. 2018, 6, 422–426. [Google Scholar] [CrossRef]
- Chow, C.W.; Chang, Y.H.; Wei, L.Y.; Yeh, C.H.; Liu, Y. 26.228-Gbit/s RGBV Visible Light Communication (VLC) with 2-m Free Space Transmission. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Prasad, S.; Schumacher, H.; Gopinath, A. High-Speed Electronics and Optoelectronics: Devices and Circuits; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ang, K.-W.; Ng, J.W.; Lo, G.-Q.; Kwong, D.-L. Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium p-i-n photodetector. Appl. Phys. Lett. 2009, 94, 223515. [Google Scholar] [CrossRef]
- Takenaka, M.; Morii, K.; Sugiyama, M.; Nakano, Y.; Takagi, S. Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Opt. Express 2012, 20, 8718–8725. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Mao, X.; Cong, J.; Xie, S. Fully integrated receiver for free-space visible light communication. IEICE Electron. Express 2019, 16, 20190418. [Google Scholar] [CrossRef] [Green Version]
- Mica, N.A.; Bian, R.; Manousiadis, P.; Jagadamma, L.K.; Tavakkolnia, I.; Haas, H.; Turnbull, G.A.; Samuel, I.D.W. Triple-cation perovskite solar cells for visible light communications. Photon. Res. 2020, 8, A16–A24. [Google Scholar] [CrossRef]
- Kang, C.H.; Liu, G.; Lee, C.; Alkhazragi, O.; Wagstaff, J.M.; Li, K.-H.; Alhawaj, F.; Ng, T.K.; Speck, J.S.; Nakamura, S. Semipolar (20-2-1) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl. Phys. Express 2019, 13, 014001. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, J.; Zhang, P.; Ahmad, W.; Wang, Y.; Alqahtani, M.; Chen, H.; Gao, C.; Chen, Z.D.; Wang, Z.; et al. High Speed and Stable Solution-Processed Triple Cation Perovskite Photodetectors. Adv. Opt. Mater. 2018, 6, 1701341. [Google Scholar] [CrossRef]
- Kang, C.H.; Trichili, A.; Alkhazragi, O.; Zhang, H.; Subedi, R.C.; Guo, Y.; Mitra, S.; Shen, C.; Roqan, I.S.; Ng, T.K.; et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Opt. Express 2019, 27, 30450–30461. [Google Scholar] [CrossRef] [PubMed]
- Kosman, J.; Almer, O.; Abbas, T.A.; Dutton, N.; Walker, R.; Videv, S.; Moore, K.; Haas, H.; Henderson, R. A 500Mb/s -46.1dBm CMOS SPAD Receiver for Laser Diode Visible-Light Communications. In Proceedings of the 2019 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 468–470. [Google Scholar]
- Alkhazragi, O.; Kang, C.H.; Kong, M.; Liu, G.; Lee, C.; Li, K.; Zhang, H.; Wagstaff, J.M.; Alhawaj, F.; Ng, T.K.; et al. 7.4-Gbit/s Visible-Light Communication Utilizing Wavelength-Selective Semipolar Micro-Photodetector. IEEE Photonics Technol. Lett. 2020, 32, 767–770. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Q.; Jia, Z.; Jin, X.; Fu, X.; Huang, H.; Zhang, X.; Yao, J.; Xu, J. Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation. Adv. Opt. Mater. 2020, 8, 1901808. [Google Scholar] [CrossRef]
- Milovančev, D.; Jukić, T.; Vokić, N.; Brandl, P.; Steindl, B.; Zimmermann, H. VLC Using 800-μm Diameter APD Receiver Integrated in Standard 0.35-μm BiCMOS Technology. IEEE Photonics J. 2021, 13, 7900513. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Berman, S.M.; Greenhouse, D.S.; Bailey, I.L.; Clear, R.D.; Raasch, T.W. Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources. Optom. Vis. Sci. 1991, 68, 645–662. [Google Scholar] [CrossRef]
- Hranilovic, S.; Kschischang, F.R. Short-range wireless optical communication using pixilated transmitters and imaging receivers. In Proceedings of the 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), Paris, France, 20–24 June 2004; Volume 892, pp. 891–895. [Google Scholar]
- Elganimi, T.Y. Performance comparison between OOK, PPM and pam modulation schemes for free space optical (FSO) communication systems: Analytical study. Int. J. Comput. Appl. 2013, 79, 11. [Google Scholar]
- Elganimi, T.Y. Studying the BER performance, power- and bandwidth- efficiency for FSO communication systems under various modulation schemes. In Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, 3–5 December 2013; pp. 1–6. [Google Scholar]
- Binh, L.N. Advanced Digital: Optical Communications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lathi, B.P. Modern Digital and Analog Communication Systems; Oxford University Press, Inc.: Oxford, UK, 1995. [Google Scholar]
- Xiong, F. Digital Modulation Techniques, 2nd ed.; Artech House, Inc.: Boston, MA, USA, 2006. [Google Scholar]
- Dimitrov, S.; Sinanovic, S.; Haas, H. Signal Shaping and Modulation for Optical Wireless Communication. J. Lightwave Technol. 2012, 30, 1319–1328. [Google Scholar] [CrossRef]
- IEEE Approved Draft Standard for Short-Range Wireless Optical Communication Using Visible Light. Available online: https://ieeexplore.ieee.org/servlet/opac?punumber=6016193 (accessed on 23 July 2021).
- Singh, R.; O’Farrell, T.; David, J.P.R. An Enhanced Color Shift Keying Modulation Scheme for High-Speed Wireless Visible Light Communications. J. Lightwave Technol. 2014, 32, 2582–2592. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [Google Scholar] [CrossRef]
- Do, T.-H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [Green Version]
- Căilean, A.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater Optical Wireless Communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, N.; Wang, Y.; Tao, L.; Shi, J. Network Architecture of a High-Speed Visible Light Communication Local Area Network. IEEE Photonics Technol. Lett. 2015, 27, 197–200. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The Near Infrared Absorption Spectrum of Liquid Water. J. Opt. Soc. Am. 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN Micro-LED Array Enabled Advanced Underwater Wireless Optical Communication and Underwater Charging. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Tsai, W.; Wang, Z.; Hung, C.; Su, C.; Lu, Y. A 5 m/25 Gbps Underwater Wireless Optical Communication System. IEEE Photonics J. 2018, 10, 7904909. [Google Scholar] [CrossRef]
- Wu, T.; Yue, L.; Huang, Y.-M.; Liu, M.; James Singh, K.; Lin, W.; Lu, T.; Heng, X.; Zhou, Z.; Kuo, H.-C.; et al. A highly stable full-color display device with VLC application potential using semipolar micro-LEDs and all-inorganic encapsulated perovskite nanocrystal. Photon. Res. 2021. [Google Scholar] [CrossRef]
- Liu, X.; Lin, R.; Chen, H.; Zhang, S.; Qian, Z.; Zhou, G.; Chen, X.; Zhou, X.; Zheng, L.; Liu, R.; et al. High-Bandwidth InGaN Self-Powered Detector Arrays toward MIMO Visible Light Communication Based on Micro-LED Arrays. ACS Photonics 2019, 6, 3186–3195. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Lin, G.-R.; Kuo, H.-C.; Cheng, C.-H.; Wu, Y.-C.; Huang, Y.; Liou, F.-J.; Lee, Y.-C. Ultrafast 2× 2 Green Micro-LED Array for Optical Wireless Communication beyond 5 Gbit/s. Photon. Res. 2021. [Google Scholar] [CrossRef]
- Guo, X.; Chi, N. Superposed 32QAM Constellation Design for 2 × 2 Spatial Multiplexing MIMO VLC Systems. J. Lightwave Technol. 2020, 38, 1702–1711. [Google Scholar] [CrossRef]
- Sabouri, S.; Jamshidi, K. Design Considerations of Silicon Nitride Optical Phased Array for Visible Light Communications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8300707. [Google Scholar] [CrossRef]
- He, J.; Dong, T.; Xu, Y. Review of Photonic Integrated Optical Phased Arrays for Space Optical Communication. IEEE Access 2020, 8, 188284–188298. [Google Scholar] [CrossRef]
- Brassard, G.; Bennett, C.H. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE international conference on computers, systems, and signal processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Bennett, C.H. Quantum cryptography: Uncertainty in the service of privacy. Science 1992, 257, 752–753. [Google Scholar] [CrossRef] [Green Version]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, I.B. Physical-Layer Security and Quantum Key Distribution; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chou, H.H.; Huang, W.T. Wavelength Tunable Asymmetric B-OWC System Based on Self-Injection Locking for TDM-PONs. IEEE Photonics Technol. Lett. 2021, 33, 370–372. [Google Scholar] [CrossRef]
- Xia, X.-X.; Zhang, Z.; Xie, H.-B.; Yuan, X.; Lin, J.; Liao, S.-K.; Liu, Y.; Peng, C.-Z.; Zhang, Q.; Pan, J.-W. LED-based fiber quantum key distribution: Toward low-cost applications. Photon. Res. 2019, 7, 1169–1174. [Google Scholar] [CrossRef]
- Lo, H.-K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
Light Source | Size (mm2) | Limiting Factor | Bandwidth | Power | Eye Safe |
---|---|---|---|---|---|
LED | 0.1~1 | τRC (~1 ns) | ~10 MHz | >1 W | Yes |
μ-LED | <0.01 | τcarrier (~1 ns) | <1.5 GHz | ~μW | Yes |
Laser diode | <0.2 | τPhoton (~1 ps) | 10~20 GHz | >1 W | No |
Laser light | ~0.01 | τPhoton (~1 ps) | 10~20 GHz | >1 W | Yes |
Light Source | Data Rate (Gbps) | Modulation Method | Distance (m) | Suitable of Lighting | Ref. |
---|---|---|---|---|---|
white phosphor | 1.1 | MIMO OFDM 1 | 1 | Yes | [80] |
RGB LED | 3.4 | WDM OFDM | 0.3 | Maybe | [81] |
RGB LED | 6.36 | MIMO OFDM | 1 | Maybe | [82] |
RGB LED | 3.375 | PAM8 | 1 | Maybe | [83] |
RGBYC LED 2 | 10.72 | MIMO OFDM | 1 | No | [84] |
GaN μ-LED | 5 | OFDM | 0.05 | No | [85] |
GaN violet μ-LED | 11.95 | OFDM | N/A | No | [86] |
DUV μ-LED 3 | 1 | OFDM | 0.3 | No | [87] |
InGaN/GaN μ-LED | 1.5 | OOK | N/A | No | [61] |
GaN Blue LD | 2.5 | OOK | 0.5 | No | [20] |
Red VSECL | 12.5 | OFDM | 5 | No | [88] |
Blue LD | 9 | OFDM | 5 | No | [22] |
GaN Blue LD | 4 | OOK | 0.15 | No | [89] |
Blue LD | 18 | OFDM | 16 | No | [90] |
Violet LD | 26.4 | DMT | 0.5 | No | [91] |
Red VSECL | 11.1 | OFDM | 1.2 | No | [92] |
Red VSECL | 10.6 | OFDM + OOK | 3 | No | [93,94] |
Blue LD + phosphor | 4 | OFDM | 0.5 | Yes | [24] |
Blue LD + phosphor | 2 | OOK | 1 | Yes | [23] |
Blue LD + phosphor | 1.25 | OOK | 1 | Yes | [95] |
NUV LD + phosphor 4 | 1.25 | OOK | 0.15 | Yes | [96] |
Blue LD + phosphor | 2.705 | OFDM | 1.5 | Yes | [97] |
Blue LD + phosphor | 5.2 | OFDM | 0.6 | Yes | [25] |
Blue LD + phosphor | 6.915 | OFDM | 1.5 | Yes | [98] |
RGB LD | 8 | OFDM | 0.5 | Maybe | [27] |
RGB LD | 20.231 | OFDM | 1 | Maybe | [99] |
RGBV LD 5 | 26.228 | OFDM | 2 | Maybe | [100] |
Year | Receiver Type | Bandwidth (MHz) | Data Rate (Gbps) | Responsivity (A/W) | Chip Material | Ref. |
---|---|---|---|---|---|---|
2018 | PD | 0.82 | N/A | 1.2 1 | Triple-cation perovskite | [108] |
2019 | scintillating-fibers photoreceiver | 86.13 | 0.25 (OOK) | N/A | N/A | [109] |
2019 | SL-APD | N/A | 0.5 (PAM4) | N/A | silicon | [110] |
2019 | APD | 155 | N/A | 0.35 2 | silicon | [105] |
2020 | Micro-PD | 300 | 7.4 (OFDM) | 0.11 3 | Semipolar InGaN/GaN PIN | [111] |
2020 | PD | Rise/fall time: 0.65/2.13 ms | ~100 3 | Black silicon | [112] | |
2020 | Micro-PD | 347 | 1.55 (OOK) | 0.191 3 | Semipolar InGaN/GaN PIN | [107] |
2020 | Solar cell | 0.114~0.586 | 0.056 (DCO-OFDM) | N/A | Triple-cation perovskite | [106] |
2021 | APD | 890 | 2 (OOK) | 0.45 4 | silicon | [113] |
Wavelength (nm) | Code | Center (nm) | (x, y) |
---|---|---|---|
380~478 | 000 | 429 | (0.169, 0.007) |
478~540 | 001 | 509 | (0.011, 0.733) |
540~588 | 010 | 564 | (0.402, 0.597) |
588~633 | 011 | 611 | (0.669, 0.331) |
633~679 | 100 | 656 | (0.739, 0.271) |
679~726 | 101 | 703 | (0.734, 0.265) |
726~780 | 110 | 753 | (0.734, 0.265) |
Mobile | Vehicle | Infrastructure | |
---|---|---|---|
Fixed coordinator | No | No | Yes |
Power supply | Limited | Moderate | Ample |
Form factor | Constrained | Unconstrained | Unconstrained |
Light source | Weak | Intense | Intense |
Physical mobility | Yes | Yes | No |
Range | Short | Long | Short/Long |
Data rate | High | Low | High/Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.-C.; Huang, W.-T.; Lee, W.-B.; Chow, C.-W.; Chang, S.-W.; Kuo, H.-C. Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals 2021, 11, 1098. https://doi.org/10.3390/cryst11091098
Yu T-C, Huang W-T, Lee W-B, Chow C-W, Chang S-W, Kuo H-C. Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals. 2021; 11(9):1098. https://doi.org/10.3390/cryst11091098
Chicago/Turabian StyleYu, Tai-Cheng, Wei-Ta Huang, Wei-Bin Lee, Chi-Wai Chow, Shu-Wei Chang, and Hao-Chung Kuo. 2021. "Visible Light Communication System Technology Review: Devices, Architectures, and Applications" Crystals 11, no. 9: 1098. https://doi.org/10.3390/cryst11091098
APA StyleYu, T.-C., Huang, W.-T., Lee, W.-B., Chow, C.-W., Chang, S.-W., & Kuo, H.-C. (2021). Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals, 11(9), 1098. https://doi.org/10.3390/cryst11091098