Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. High Temperature XRD Analysis
2.3. Thermoelectric Leg Fabrication and Characterization
3. Results and Discussion
3.1. High Temperature X-ray Diffraction Study of CrSi
3.2. Fabrication of Ti and Nb Electric Contacts on CrSi
3.3. Electronic and Power Generation Characterization of the Ti/CrSi/Ti Leg
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TE | Thermoelectric |
XRD | X-ray Diffraction |
SEM | Scanning Electron Microscopy |
EDS | Energy Dispersive Spectroscopy |
SPS | Spark Plasma Sintering |
Appendix A
Symbols | Meaning |
---|---|
Seebeck coefficient of the material | |
Electrical resistivity of the material | |
Thermal conductivity of the material | |
Open-circuit voltage | |
R | Total leg resistance |
Electrical output power | |
Input heat flow | |
Output heat flow | |
Input water temperature | |
Output water temperature | |
Water flow | |
C | Specific heat of water |
Conversion efficiency of the leg | |
Thermal gradient applied to the leg | |
Average temperature of the leg when placed inside a thermal gradient |
299 K | 349 K | 399 K | 449 K | 499 K | 549 K | 599 K | 549 K | 699 K | 749 K | 799 K | 849 K | 899 K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a (Å) | 4.42692(7) | 4.42930(6) | 4.43132(6) | 4.43332(9) | 4.43548(7) | 4.4375(1) | 4.4399(1) | 4.44190(7) | 4.4443(1) | 4.44648(6) | 4.4485(1) | 4.4512(1) | 4.45359(9) |
c (Å) | 6.3729(1) | 6.3757(1) | 6.3778(2) | 6.3800(1) | 6.3824(1) | 6.3845(2) | 6.3869(2) | 6.3888(1) | 6.3907(2) | 6.3922(1) | 6.3938(1) | 6.3954(2) | 6.3972(2) |
V (Å) | 108.158(6) | 108.322(5) | 108.456(7) | 108.591(5) | 108.739(5) | 108.87(1) | 109.03(1) | 109.163(1) | 109.31(1) | 109.447(5) | 109.576(8) | 109.736(9) | 109.882(7) |
Cr at 1/2, 0, 0 (Wickoff pos. 3c) | |||||||||||||
(Å) | 0.53(6) | 0.49(6) | 0.52(6) | 0.55(6) | 0.63(6) | 0.49(5) | 0.66(5) | 0.70(5) | 0.74(6) | 1.09(5) | 1.16(5) | 0.92(5) | 1.12(5) |
Si at x, , 1/3 (Wickoff pos. 6i) | |||||||||||||
x | 0.167(1) | 0.165(1) | 0.166(1) | 0.1660(9) | 0.1644(9) | 0.1654(8) | 0.1660(9) | 0.166(1) | 0.1651(7) | 0.1658(6) | 0.1659(8) | 0.1665(7) | 0.1665(6) |
(Å) | 0.67(6) | 0.69(6) | 0.74(6) | 0.81(6) | 0.86(6) | 0.75(5) | 0.93(6) | 0.76(5) | 0.94(5) | 1.18(5) | 1.32(5) | 1.11(5) | 1.33(5) |
1.87 | 2.23 | 1.92 | 1.94 | 2.02 | 2.00 | 1.95 | 2.45 | 2.67 | 2.56 | 2.87 | 2.64 | 2.55 |
References
- He, R.; Schierning, G.; Nielsch, K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Adv. Mater. Technol. 2018, 3, 1700256. [Google Scholar] [CrossRef] [Green Version]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Liu, Z.; Sato, N.; Gao, W.; Yubuta, K.; Kawamoto, N.; Mitome, M.; Kurashima, K.; Owada, Y.; Nagase, K.; Lee, C.H.; et al. Demonstration of ultrahigh thermoelectric efficiency of ≈7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 5, 1196–1208. [Google Scholar] [CrossRef]
- Prado-Gonjal, J.; Phillips, M.; Vaqueiro, P.; Min, G.; Powell, A.V. Skutterudite Thermoelectric Modules with High Volume-Power-Density: Scalability and Reproducibility. ACS Appl. Energy Mater. 2018, 1, 6609–6618. [Google Scholar] [CrossRef]
- Bu, Z.; Zhang, X.; Shan, B.; Tang, J.; Liu, H.; Chen, Z.; Lin, S.; Li, W.; Pei, Y. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Sci. Adv. 2021, 7, eabf2738. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Mao, T.; Huang, Z.; Xia, X.; Liao, J.; Agne, M.T.; Gu, M.; Zhang, Q.; Ren, D.; Bai, S.; et al. High-Efficiency and Stable Thermoelectric Module Based on Liquid-Like Materials. Joule 2019, 3, 1538–1548. [Google Scholar] [CrossRef]
- Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M.G. Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. Joule 2018, 2, 1339–1355. [Google Scholar] [CrossRef] [Green Version]
- Chetty, R.; Nagase, K.; Aihara, M.; Jood, P.; Takazawa, H.; Ohta, M.; Yamamoto, A. Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing. Appl. Energy 2020, 260, 114443. [Google Scholar] [CrossRef]
- Thimont, Y.; LeBlanc, S. The impact of thermoelectric leg geometries on thermal resistance and power output. J. Appl. Phys. 2019, 126, 095101. [Google Scholar] [CrossRef] [Green Version]
- El Oualid, S.; Kogut, I.; Benyahia, M.; Geczi, E.; Kruck, U.; Kosior, F.; Masschelein, P.; Candolfi, C.; Dauscher, A.; Koenig, J.D.; et al. High Power Density Thermoelectric Generators with Skutterudites. Adv. Energy Mater. 2021, 11, 2100580. [Google Scholar] [CrossRef]
- Li, W.; Poudel, B.; Nozariasbmarz, A.; Sriramdas, R.; Zhu, H.; Kang, H.B.; Priya, S. Bismuth Telluride/Half-Heusler Segmented Thermoelectric Unicouple Modules Provide 12% Conversion Efficiency. Adv. Energy Mater. 2020, 10, 2001924. [Google Scholar] [CrossRef]
- Caballero-Calero, O.; Rull-Bravo, M.; Platzek, D.; Cárdenas, M.D.; Fernández, R.; Moure, A.; Fernández, J.F.; Martín-González, M. Tubular ring thermoelectric module for exhaust pipes: From Skutterudite nanopowders to the final device. Energy 2021, 234, 121223. [Google Scholar] [CrossRef]
- Liang, J.; Wang, T.; Qiu, P.; Yang, S.; Ming, C.; Chen, H.; Song, Q.; Zhao, K.; Wei, T.R.; Ren, D.; et al. Flexible thermoelectrics: From silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 2019, 12, 2983–2990. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Saparamadu, U.; Li, W.; Kang, H.B.; Dettor, C.; Zhu, H.; Poudel, B.; Priya, S. High-performance half-Heusler thermoelectric devices through direct bonding technique. J. Power Sources 2021, 493, 229695. [Google Scholar] [CrossRef]
- Nagai, H.; Takamatsu, T.; Iijima, Y.; Hayashi, K.; Miyazaki, Y. Effects of Ge substitution on thermoelectric properties of CrSi2. Jpn. J. Appl. Phys. 2016, 55, 111801. [Google Scholar] [CrossRef]
- Le Tonquesse, S.; Dorcet, V.; Joanny, L.; Demange, V.; Prestipino, C.; Guo, Q.; Berthebaud, D.; Mori, T.; Pasturel, M. Mesostructure—Thermoelectric properties relationships in VxMn1-xSi1.74 (x = 0, 0.04) Higher Manganese Silicides prepared by magnesiothermy. J. Alloys Compd. 2020, 816, 152577. [Google Scholar] [CrossRef]
- Le Tonquesse, S.; Joanny, L.; Guo, Q.; Elkaim, E.; Demange, V.; Berthebaud, D.; Mori, T.; Pasturel, M.; Prestipino, C. Influence of Stoichiometry and Aging at Operating Temperature on Thermoelectric Higher Manganese Silicides. Chem. Mater. 2020, 32, 10601–10609. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, W.; Liu, Z.; Fu, X.; Le Tonquesse, S.; Sato, N.; Son, H.W.; Shimamura, K.; Berthebaud, D.; Mori, T. Thermoelectric Performance of Cr Doped and Cr–Fe Double-Doped Higher Manganese Silicides with Adjusted Carrier Concentration and Significant Electron–Phonon Interaction. ACS Appl. Mater. Interfaces 2021, 13, 8574–8583. [Google Scholar] [CrossRef] [PubMed]
- Le Tonquesse, S.; Verastegui, Z.; Huynh, H.; Dorcet, V.; Guo, Q.; Demange, V.; Prestipino, C.; Berthebaud, D.; Mori, T.; Pasturel, M. Magnesioreduction Synthesis of Co-Doped β-FeSi2: Mechanism, Microstructure, and Improved Thermoelectric Properties. ACS Appl. Energy Mater. 2019, 12, 8525–8534. [Google Scholar] [CrossRef]
- LeBlanc, S.; Yee, S.K.; Scullin, M.L.; Dames, C.; Goodson, K.E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energ. Rev. 2014, 84, 313–317. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Goodenough, J.B.; Shi, L. Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. J. Mater. Chem. C 2015, 3, 10500–10508. [Google Scholar] [CrossRef]
- Sadia, Y.; Aminov, Z.; Mogilyansky, D.; Gelbstein, Y. Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing. Intermetallics 2016, 68, 71–77. [Google Scholar] [CrossRef]
- Khalil, M.; Moll, A.; Godfroy, M.; Letrouit-Lebranchu, A.; Villeroy, B.; Alleno, E.; Viennois, R.; Beaudhuin, M. Thermoelectric properties and stability of nanostructured chromium disilicide CrSi2. J. Appl. Phys. 2019, 126, 135103. [Google Scholar] [CrossRef]
- Moll, A.; Viennois, R.; Boehm, M.; Koza, M.M.; Sidis, Y.; Rouquette, J.; Laborde, S.; Debray, J.; Menaert, B.; Castellan, J.P.; et al. Anharmonicity and Effect of the Nanostructuring on the Lattice Dynamics of CrSi2. J. Phys. Chem. C 2021, 125, 14786–14796. [Google Scholar] [CrossRef]
- Norizan, M.N.; Miyazaki, Y.; Ohishi, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S. The Nanometer-Sized Eutectic Structure of Si/CrSi2 Thermoelectric Materials Fabricated by Rapid Solidification. J. Electron. Mater. 2018, 47, 2330–2336. [Google Scholar] [CrossRef]
- He, Z.; Platzek, D.; Stiewe, C.; Chen, H.; Karpinski, G.; Müller, E. Thermoelectric properties of hot-pressed Al- and Co-doped iron disilicide materials. J. Alloys Compd. 2007, 438, 303–309. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R. MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld Texture Analysis and more. In Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Montreal, QC, Canada, 9–13 August 1999; Volume 1, p. 1599. [Google Scholar] [CrossRef]
- Lutterotti, L.; Vasin, R.; Wenk, H.R. Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffr. 2014, 19, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 1987, 20, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Mengali, O.; Seiler, M. Contact resistance studies on thermoelectric materials. Adv. Energy Convers. 1962, 2, 59–68. [Google Scholar] [CrossRef]
- Hu, X.; Yamamotoa, A.; Ohta, M.; Nishiate, H. Measurement and simulation of thermoelectric efficiency for single leg. Rev. Sci. Instrum. 2015, 86, 045103. [Google Scholar] [CrossRef] [PubMed]
- Nishida, I. The crystal growth and thermoelectric properties of chromium disilicide. J. Mater. Sci. 1972, 7, 1119–1124. [Google Scholar] [CrossRef]
- Mattheiss, L.F. Calculated structural properties of CrSi2, MoSi2, and WSi2. Phys. Rev. B 1992, 45, 3252–3259. [Google Scholar] [CrossRef]
- Dasgupta, T.; Etourneau, J.; Chevalier, B.; Matar, S.F.; Umarji, A.M. Structural, thermal, and electrical properties of CrSi2. J. Appl. Phys. 2008, 103, 113516. [Google Scholar] [CrossRef]
- Oberg, E.; Jones, D.; Holbrook, L.; Ryffel, H. Machinery’s Handbook, 29th ed.; Industrial Press Inc.: New York, NY, USA, 2012; pp. 376–377. [Google Scholar]
- Feng, S.P.; Chang, Y.H.; Yang, J.; Poudel, B.; Yu, B.; Ren, Z.; Chen, G. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Phys. Chem. Chem. Phys. 2013, 15, 6757–6762. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Kim, S.; Bae, S.H.; Son, I. Enhancement of bonding strength in BiTe-based thermoelectric modules by electroless nickel, electroless palladium, and immersion gold surface modification. Appl. Surf. Sci. 2021, 545, 149005. [Google Scholar] [CrossRef]
- Zhang, J.F.; Yang, K.; Deng, C.M.; Deng, C.G.; Lui, M.; Dai, M.J.; Zhou, K.S. Method for spray thick nickel coating on the surface of semiconductor. Chinese Patent CN 104357784 A, 26 November 2014. [Google Scholar]
- Karuppaiah, S.; Beaudhuin, M.; Viennois, R. Investigation on the thermoelectric properties of nanostructured. J. Solid State Chem. 2013, 199, 90–95. [Google Scholar] [CrossRef]
- Nagai, H.; Takamatsu, T.; Iijima, Y.; Hayashi, K.; Miyazaki, Y. Effects of Nb substitution on thermoelectric properties of CrSi2. J. Alloys Compd. 2016, 687, 37–41. [Google Scholar] [CrossRef]
- Nishida, I.; Sakata, T. Semiconducting properties of pure and Mn-doped chromium disilicides. J. Phys. Chem. Solids 1978, 39, 499–505. [Google Scholar] [CrossRef]
- Kim, H.S.; Liu, W.; Ren, Z. Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems; CRC Press: Boca Raton, FL, USA, 2018; Chapter 13. [Google Scholar]
- Hu, X.; Nagase, K.; Jood, P.; Ohta, M.; Yamamoto, A. Power Generation Evaluated on a Bismuth Telluride Unicouple Module. J. Electron. Mater. 2015, 44, 1785–1790. [Google Scholar] [CrossRef]
299 K | 899 K | |
---|---|---|
(× 10 K) | 9.93(9) | 9.88(9) |
(× 10 K) | 7.2(1) | 5.21(8) |
(× 10 K) | 26.2(2) | 25.8(2) |
Measured | Calculated | |
---|---|---|
(mV) | 3.95 | 5.50 |
R (m) | 1.49 | 1.35 |
(W) | 0.85 | 1.97 |
(%) | 0.33 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Tonquesse, S.; Matsushita, Y.; Jood, P.; Ohta, M.; Mori, T.; Berthebaud, D. Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs. Crystals 2021, 11, 1140. https://doi.org/10.3390/cryst11091140
Le Tonquesse S, Matsushita Y, Jood P, Ohta M, Mori T, Berthebaud D. Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs. Crystals. 2021; 11(9):1140. https://doi.org/10.3390/cryst11091140
Chicago/Turabian StyleLe Tonquesse, Sylvain, Yoshitaka Matsushita, Priyanka Jood, Michihiro Ohta, Takao Mori, and David Berthebaud. 2021. "Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs" Crystals 11, no. 9: 1140. https://doi.org/10.3390/cryst11091140
APA StyleLe Tonquesse, S., Matsushita, Y., Jood, P., Ohta, M., Mori, T., & Berthebaud, D. (2021). Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legs. Crystals, 11(9), 1140. https://doi.org/10.3390/cryst11091140