The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical Materials
2.2. The Synthesis of ZnO
2.3. The Synthesis of PANI/ZnO
2.4. Characterization
2.5. The Adsorption Performance of PANI/ZnO
3. Results and Discussions
3.1. The Morphology and Structure of PANI/ZnO
3.2. The Adsorption Performance of PANI/ZnO
3.2.1. The Influence of the Amount of ZnO
3.2.2. The Influence of the Mass of the Absorbent
3.2.3. The Adsorption Kinetics of Process of PANI/ZnO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duhan, M.; Kaur, R. Adsorptive removal of methyl orange with polyaniline nanofibers: An unconventional adsorbent for water treatment. Environ. Technol. 2020, 41, 2977–2990. [Google Scholar] [CrossRef] [PubMed]
- Senguttuvan, S.; Senthilkumar, P.; Janaki, V.; Kamala-Kannan, S. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters—A review. Chemosphere 2021, 267, 129201. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Rana, U.; Das, P.; Malik, S. Network of Polyaniline Nanotubes for Wastewater Treatment and Oil/Water Separa-tion. ACS Appl. Polym. Mater. 2019, 1, 1624–1633. [Google Scholar] [CrossRef]
- Stejskal, J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020, 74, 1–54. [Google Scholar] [CrossRef]
- Samadi, A.; Xie, M.; Li, J.; Shon, H.; Zheng, C.; Zhao, S. Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem. Eng. J. 2021, 418, 129425. [Google Scholar] [CrossRef]
- Kamal, S.; Khan, F.; Kausar, H.; Khan, M.S.; Ahmad, A.; Ishraque Ahmad, S.; Asim, M.; Alshitari, W.; Nami, S.A.A. Synthesis, characterization, morphology, and adsorption studies of ternary nanocomposite comprising graphene oxide, chitosan, and polypyrrole. Polym. Compos. 2020, 41, 3758–3767. [Google Scholar] [CrossRef]
- Eskandari, E.; Kosari, M.; Davood Abadi Farahani, M.H.; Khiavi, N.D.; Saeedikhani, M.; Katal, R.; Zarinejad, M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep. Purif. Technol. 2020, 231, 115901. [Google Scholar] [CrossRef]
- Abdelaziz, I.; Hamza ighnih Abdelghani, H.; Yassine, N.; Mohamed, L.; Hassan, K.; Maria, E.; Rajae, L.; Badredine, S.; Abdallah, A. Synthesis and characterization of polyaniline-based biocomposites and their application for effective removal of or-ange G dye using adsorption in dynamic regime. Chem. Phys. Lett. 2021, 778, 138811. [Google Scholar]
- Saima, N.; Haq, N.B.; Munawar, I.; Fida, H.; Fazli, M.S. Chitosan, starch, polyaniline and polypyrrole biocomposite with sug-arcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 2020, 147, 439–452. [Google Scholar]
- Rahman, K.H.; Kar, A.K. Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. J. Environ. Chem. Eng. 2020, 8, 104181. [Google Scholar] [CrossRef]
- Patil, M.R.; Shrivastava, V.S. Adsorption removal of carcinogenic acid violet19 dye from aqueous solution by polyaniline-Fe2O3 magnetic nano-composite. J. Mater. Environ. Sci. 2015, 6, 11–21. [Google Scholar]
- Akash, D.; Animesh, D.; Biswajit, S. Sono-assisted enhanced adsorption of eriochrome Black-T dye onto a novel polymeric nanocomposite: kinetic, isotherm, and response surface methodology optimization. J. Dispers. Sci. Technol. 2021, 42, 1579–1592. [Google Scholar]
- Dutt, S.; Vats, T.; Siril, P.F. Synthesis of polyaniline–magnetite nanocomposites using swollen liquid crystal templates for magnetically separable dye adsorbent applications. New J. Chem. 2018, 42, 5709–5719. [Google Scholar] [CrossRef]
- Alves, F.H.D.O.; Araújo, O.A.; de Oliveira, A.C.; Garg, V.K. Preparation and characterization of PAni(CA)/Magnetic iron oxide hybrids and evaluation in adsorption/photodegradation of blue methylene dye. Surf. Interfaces 2021, 23, 100954. [Google Scholar] [CrossRef]
- Dastgerdi, Z.H.; Meshkat, S.S.; Hosseinzadeh, S.; Esrafili, M.D. Application of Novel Fe3O4–Polyaniline Nanocomposites in Asphaltene Adsorptive Removal: Equilibrium, Kinetic Study and DFT Calculations. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1160–1170. [Google Scholar] [CrossRef]
- Muhammad, A.; Bilal, S. Comparative Study of the Adsorption of Acid Blue 40 on Polyaniline, Magnetic Oxide and Their Composites: Synthesis, Characterization and Application. Materials 2019, 12, 2854. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Bahl, T.; Kumar, R. Study of the methylene blue adsorption mechanism using ZrO2/Polyaniline nanocomposite. Nano Express 2020, 1, 030025. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Golbaz, F.; Golikand, A.N.; Moradi, O. Synthesis and characteristics of polyaniline/zirconium oxide conductive nanocomposite for dye adsorption application. J. Mol. Liq. 2016, 218, 494–498. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, T. A DFT study of polyaniline/ZnO nanocomposite as a photocatalyst for the reduction of methylene blue dye. J. Mol. Liq. 2019, 293, 111528. [Google Scholar] [CrossRef]
- Olad, A.L.I.; Behboudi, S.; Entezami, A.A. Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull. Mater. Sci. 2012, 35, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Eskizeybek, V.; Sarı, F.; Gülce, H.; Gülce, A.; Avcı, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B Environ. 2012, 119–120, 197–206. [Google Scholar] [CrossRef]
- Gilja, V.; Živković, I.; Klaser, T.; Skoko, Ž.; Kraljić Roković, M.; Hrnjak-Murgić, Z.; Žic, M. The Impact of In Situ Polymerization Conditions on the Structures and Properties of PANI/ZnO-Based Multiphase Composite Photocatalysts. Catalysts 2020, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, M.W.; Riapanitra, A.; Iswanto, P. Synthesis of polyaniline/ZnO (PANI/ZnO) nanocomposite using interface polymerization method and its photodegradation test on rhodamine B under visible light irradiation. Molekul 2015, 10, 121–128. [Google Scholar] [CrossRef]
- Kannusamy, P.; Sivalingam, T. Synthesis of porous chitosan–polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids Surf. B Biointerfaces 2013, 108, 229–238. [Google Scholar] [CrossRef]
- Nerkar, N.V.; Kondawar, S.B.; Kargirwar, B.S.; Hae, K.Y. Polyaniline/ZnO nanocomposites for the removal of methyl orange dye from waste water. Int. J. Mod. Phys. B 2018, 32, 1840085. [Google Scholar] [CrossRef]
- Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K.L.; Saha, B. Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: Kinetic, isotherm and optimization of process parameters. Ultrason. Sonochem. 2019, 54, 290–301. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 2019, 476, 16–27. [Google Scholar] [CrossRef]
Time/min | PANI | PANI/ZnO | ||||||
---|---|---|---|---|---|---|---|---|
0.033 g | 0.066 g | 0.099 g | 0.132 g | 0.033 g | 0.066 g | 0.099 g | 0.132 g | |
15 | 41% | 58% | 72% | 73% | 18% | 65% | 75% | 77% |
30 | 51% | 70% | 82% | 83% | 28% | 77% | 83% | 85% |
45 | 57% | 76% | 86% | 87% | 36% | 82% | 87% | 89% |
60 | 62% | 77% | 87% | 88% | 43% | 84% | 88% | 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Y.; Lai, Y.; Zhang, S.; Wang, R.; Xu, Z.; Pei, Y. The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method. Crystals 2022, 12, 34. https://doi.org/10.3390/cryst12010034
Jing Y, Lai Y, Zhang S, Wang R, Xu Z, Pei Y. The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method. Crystals. 2022; 12(1):34. https://doi.org/10.3390/cryst12010034
Chicago/Turabian StyleJing, Yiqi, Yongliang Lai, Shujia Zhang, Ruijuan Wang, Zhuohui Xu, and Yuanjiao Pei. 2022. "The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method" Crystals 12, no. 1: 34. https://doi.org/10.3390/cryst12010034
APA StyleJing, Y., Lai, Y., Zhang, S., Wang, R., Xu, Z., & Pei, Y. (2022). The Adsorption Performance of Polyaniline/ZnO Synthesized through a Two-Step Method. Crystals, 12(1), 34. https://doi.org/10.3390/cryst12010034