Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Crystal Structure Determination
2.3. Other Measurements
3. Results and Discussion
3.1. Structural Analysis
3.2. FT-IR Analysis
3.3. Thermal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koroteev, P.S.; Ilyukhin, A.B.; Gavrikov, A.V.; Babeshkin, K.A.; Efimov, N.N. Mononuclear Transition Metal Cymantrenecarboxylates as Precursors for Spinel-Type Manganites. Molecules 2022, 27, 1082. [Google Scholar] [CrossRef] [PubMed]
- Krejner, E.; Sierański, T.; Świątkowski, M.; Bogdan, M.; Kruszyński, R. Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules 2020, 25, 5324. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, D.; Xu, X.; Jiang, L.; Si, R.; Shi, W.; Cheng, P. Reversible Formation of Coordination Bonds in Sn-Based Metal-Organic Frameworks for High-Performance Lithium Storage. Nat. Commun. 2021, 12, 3131. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry—A Review. Int. J. Mol. Sci. 2020, 21, 5443. [Google Scholar] [CrossRef] [PubMed]
- Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of Solvents, PH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem. 2019, 12, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-M. Chapter 10-Assembly Chemistry of Coordination Polymers. In Modern Inorganic Synthetic Chemistry; Xu, R., Pang, W., Huo, Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 207–225. ISBN 978-0-444-53599-3. [Google Scholar]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Biradha, K. Crystal Engineering: From Weak Hydrogen Bonds to Co-Ordination Bonds. CrystEngComm 2003, 5, 374–384. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal Engineering: A Holistic View. Angew. Chem. Int. Ed. Engl. 2007, 46, 8342–8356. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G.; Pilati, T.; Liantonio, R.; Meyer, F. Engineering Functional Materials by Halogen Bonding. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1–15. [Google Scholar] [CrossRef]
- Wang, H.-N.; Meng, X.; Dong, L.-Z.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Coordination Polymer-Based Conductive Materials: Ionic Conductivity vs. Electronic Conductivity. J. Mater. Chem. A 2019, 7, 24059–24091. [Google Scholar] [CrossRef]
- Gul, Z.; Khan, S.; Ullah, S.; Ullah, H.; Khan, M.U.; Ullah, M.; Altaf, A.A. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit. Rev. Anal. Chem. 2022; 1–21, online ahead of print. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Yamagami, R.; Sieg, J.P.; Bevilacqua, P.C. Functional Roles of Chelated Magnesium Ions in RNA Folding and Function. Biochemistry 2021, 60, 2374–2386. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Behbehani, G.; Saboury, A.A. A Thermodynamic Study on the Binding of Magnesium with Human Growth Hormone. J. Anal. Calorim. 2007, 89, 857–861. [Google Scholar] [CrossRef]
- Grubbs, R.D.; Maguire, M.E. Magnesium as a Regulatory Cation: Criteria and Evaluation. Magnesium 1987, 6, 113–127. [Google Scholar]
- Ayuk, J.; Gittoes, N.J. Contemporary View of the Clinical Relevance of Magnesium Homeostasis. Ann. Clin. Biochem 2014, 51, 179–188. [Google Scholar] [CrossRef]
- Mildvan, A.S. Role of Magnesium and Other Divalent Cations in ATP-Utilizing Enzymes. Magnesium 1987, 6, 28–33. [Google Scholar]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium Basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Gong, R.; Liu, Y.; Luo, G.; Yang, L. Dietary Magnesium Intake Affects the Vitamin D Effects on HOMA-β and Risk of Pancreatic β-Cell Dysfunction: A Cross-Sectional Study. Front. Nutr. 2022, 9, 849747. [Google Scholar] [CrossRef]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L.; et al. Magnesium Status and Supplementation Influence Vitamin D Status and Metabolism: Results from a Randomized Trial. Am. J. Clin. Nutr 2018, 108, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.S.; Pack, G.R.; Lamm, G. Calculations of Magnesium−Nucleic Acid Site Binding in Solution. J. Phys. Chem. B 2004, 108, 6072–6081. [Google Scholar] [CrossRef]
- Dudev, T.; Cowan, J.A.; Lim, C. Competitive Binding in Magnesium Coordination Chemistry: Water versus Ligands of Biological Interest. J. Am. Chem. Soc. 1999, 121, 7665–7673. [Google Scholar] [CrossRef]
- Piovesan, D.; Profiti, G.; Martelli, P.L.; Casadio, R. The Human “Magnesome”: Detecting Magnesium Binding Sites on Human Proteins. BMC Bioinform. 2012, 13, S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieranski, T.; Kruszynski, R. Magnesium Sulphate Complexes with Hexamethylenetetramine and 1,10-Phenanthroline. J. Anal. Calorim 2012, 109, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Yufanyi, D.M.; Ondoh, A.M.; Foba-Tendo, J.; Mbadcam, K.J. Effect of Decomposition Temperature on the Crystallinity of α-Fe2O3 (Hematite) Obtained from an Iron(III)-Hexamethylenetetramine Precursor. Am. J. Chem. 2015, 5, 1–9. [Google Scholar]
- Kirillov, A.M. Hexamethylenetetramine: An Old New Building Block for Design of Coordination Polymers. Coord. Chem. Rev. 2011, 255, 1603–1622. [Google Scholar] [CrossRef]
- Czubacka, E.; Kruszynski, R.; Sieranski, T. The Structure and Thermal Behaviour of Sodium and Potassium Multinuclear Compounds with Hexamethylenetetramine. Struct. Chem. 2012, 23, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Chwa, A.; Kavanagh, K.; Linnebur, S.A.; Fixen, D.R. Evaluation of Methenamine for Urinary Tract Infection Prevention in Older Adults: A Review of the Evidence. Adv. Drug Saf. 2019, 10, 2042098619876749. [Google Scholar] [CrossRef]
- Hirano, K.; Asami, M. Phenolic Resins—100 years of Progress and Their Future. React. Funct. Polym. 2013, 73, 256–269. [Google Scholar] [CrossRef]
- Choi, M.H.; Chung, I.J.; Lee, J.D. Morphology and Curing Behaviors of Phenolic Resin-Layered Silicate Nanocomposites Prepared by Melt Intercalation. Chem. Mater. 2000, 12, 2977–2983. [Google Scholar] [CrossRef]
- STOE & Cie GmbH. X-RED Version 1.18; STOE & Cie GmbH: Darmstadt, Germany, 1999. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welcher, F.J. Analityczne Zastosowanie Kwasu Wersenowego (Eng. The Analytical Uses of Etylenediamineteraacetic Acid); WNT: Warsaw, Poland, 1963. [Google Scholar]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Shimoni, L.; Glusker, J.P.; Bock, C.W. Energies and Geometries of Isographic Hydrogen-Bonded Networks. 1. The (8) Graph Set. J. Phys. Chem. 1996, 100, 2957–2967. [Google Scholar] [CrossRef]
- Ahuja, I.S.; Singh, R.; Yadava, C.L. Infrared Spectral Evidence for Mono-, Bi- and Tetra-Dentate Behaviour of Hexamethylenetetramine. Proc. Indian Acad. Sci. (Chem. Sci.) 1983, 92, 59–63. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Sutton, C.C.R.; da Silva, G.; Franks, G.V. Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes: Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. Chem.–A Eur. J. 2015, 21, 6801–6805. [Google Scholar] [CrossRef] [Green Version]
- Swiatkowski, M.; Kruszynski, R. Structurally Diverse Coordination Compounds of Zinc as Effective Precursors of Zinc Oxide Nanoparticles with Various Morphologies. Appl. Organomet. Chem. 2019, 33, e4812. [Google Scholar] [CrossRef]
- Kakihana, M.; Akiyama, M. Vibrational Analysis of the Propionate Ion and Its Carbon-13 Derivatives: Infrared Low-Temperature Spectra, Normal-Coordinate Analysis, and Local-Symmetry Valence Force Field. J. Phys. Chem. 1987, 91, 4701–4709. [Google Scholar] [CrossRef]
- Jensen, J.O. Vibrational Frequencies and Structural Determinations of Hexamethylenetetraamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 1347–1364. [Google Scholar] [CrossRef]
- Stoilova, D.; Koleva, V. IR Study of Solid Phases Formed in the Mg(HCOO)2–Cu(HCOO)2–H2O System. J. Mol. Struct. 2000, 553, 131–139. [Google Scholar] [CrossRef]
- Koleva, V.; Stoilova, D. Infrared and Raman Studies of the Solids in the Mg(CH3COO)2–Zn(CH3COO)2–H2O System. J. Mol. Struct. 2002, 611, 1–8. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 3 |
---|---|---|
Empirical formula | C14H46MgN8O14 | C18H54MgN8O14 |
Formula weight | 574.90 | 631.00 |
Crystal system, space group | Triclinic, P-1 | Triclinic, P-1 |
Temperature (K) | 291.0 (3) | 291.0 (3) |
Radiation | MoKα (λ = 0.71073 Å) | CuKα (λ = 1.54178) |
a (Å) | 9.2503 (3) | 8.3713 (4) |
b (Å) | 9.2802 (4) | 9.1600 (7) |
c (Å) | 9.3256 (4) | 12.0634 (6) |
α (°) | 76.621 (4) | 94.210 (6) |
β (°) | 60.933 (4) | 100.128 (3) |
γ (°) | 79.673 (3) | 114.963 (2) |
Volume (Å3) | 678.63 (5) | 814.18 (8) |
Z, Calculated density (g/cm3) | 1, 1.407 | 1, 1.287 |
Absorption coefficient (mm−1) | 0.142 | 1.094 |
Min. and max. transmission | 0.946 and 0.968 | 0.811 and 0.819 |
F(000) | 310 | 342 |
Crystal size (mm) | 0.381 × 0.299 × 0.267 | 0.187 × 0.183 × 0.180 |
2θ range for data collection (°) | 4.526 to 50.04 | 3.77 to 67.64 |
Index ranges | −10 ≤ h ≤ 10, −11 ≤ k ≤ 10, −11 ≤ l≤ 10 | −10 ≤ h ≤ 9, −10 ≤ k ≤ 10, −14 ≤ l ≤ 14 |
Reflections collected | 6794 | 9286 |
Independent reflections | 2386 [Rint = 0.0202, Rsigma = 0.0190] | 2800 [Rint = 0.0287, Rsigma = 0.0275] |
Data/restraints/parameters | 2386/0/169 | 2800/0/189 |
Goodness-of-fit on F2 | 1.084 | 1.059 |
Final R indexes [I > 2σ (I)] | R1 = 0.0329, wR2 = 0.1012 | R1 = 0.0372, wR2 = 0.0979 |
Final R indexes [all data] | R1 = 0.0379, wR2 = 0.1033 | R1 = 0.0377, wR2 = 0.0984 |
Largest diff. peak and hole (e•Å−3) | 0.47 and −0.19 | 0.32 and −0.26 |
Compound 1 | Compound 3 | ||
---|---|---|---|
Mg1—O1 | 2.0350 (9) | Mg1—O1 | 2.0732 (9) |
Mg1—O2 | 2.0695 (10) | Mg1—O2 | 2.0587 (9) |
Mg1—O3 | 2.0349 (9) | Mg1—O3 | 2.0716 (9) |
O1—Mg1—O2 | 87.01 (4) | O1—Mg1—O2 | 90.59 (4) |
O1—Mg1—O2 i | 92.99 (4) | O1—Mg1—O2 ii | 89.41 (4) |
O1—Mg1—O3 | 91.06 (4) | O1—Mg1—O3 | 90.02 (4) |
O1—Mg1—O3i | 88.94 (4) | O1—Mg1—O3 ii | 89.98 (4) |
O2—Mg1—O3 | 87.93 (4) | O2—Mg1—O3 | 90.42 (4) |
O2—Mg1—O3 i | 92.07 (4) | O2—Mg1—O3 ii | 89.58 (4) |
D-H•••A | d(D-H) | d(H•••A) | d(D•••A) | <(DHA) |
---|---|---|---|---|
Compound 1 | ||||
O1—H1O•••O11 | 0.89 | 1.80 | 2.6885(15) | 173.5 |
O1—H1P•••N1 i | 0.76 | 2.07 | 2.8226(15) | 166.7 |
O2—H2O•••O12 ii | 0.85 | 1.93 | 2.7683(16) | 169.9 |
O2—H2P•••N4 iii | 0.80 | 2.07 | 2.8467(15) | 164.1 |
O3—H3O•••O98 iv | 0.86 | 1.80 | 2.6634(14) | 173.0 |
O3—H3P•••N3 v | 0.88 | 1.94 | 2.8182(16) | 170.8 |
O98—H98O•••N2 | 0.91 | 1.90 | 2.8010(16) | 174.8 |
O98—H98P•••O99 vi | 0.92 | 1.80 | 2.7251(18) | 177.8 |
O99—H99O•••O11 vii | 0.85 | 1.97 | 2.7560(18) | 154.3 |
O99—H99P•••O12 viii | 0.90 | 1.86 | 2.729(2) | 161.4 |
Compound 3 | ||||
O1—H1O•••N1 | 0.86 | 2.00 | 2.8386(17) | 163.6 |
O1—H1P•••O11 ix | 0.93 | 1.75 | 2.6716(15) | 171.6 |
O2—H2O•••N4 x | 0.81 | 2.06 | 2.8496(18) | 163.2 |
O2—H2P•••O12 | 0.90 | 1.81 | 2.7053(16) | 173.0 |
O3—H3O•••N2 xi | 0.85 | 1.98 | 2.8271(17) | 177.4 |
O3—H3P•••O99 xii | 0.88 | 1.89 | 2.7618(16) | 170.0 |
O98—H98O•••N3 xiii | 0.91 | 2.09 | 2.9609(19) | 160.0 |
O98—H98P•••O12 | 0.98 | 1.78 | 2.751(2) | 170.1 |
O99—H99O•••O11 xiv | 0.85 | 1.91 | 2.756(2) | 173.8 |
O99—H99P•••O98 xii | 0.93 | 1.88 | 2.800(2) | 170.0 |
1 | 2 | 3 | hmta [44] | Mg(HCOO)2 [45] | Mg(CH3COO)2 [46] | NaCH3CH2COO [43] | Assignment |
---|---|---|---|---|---|---|---|
3427 br | 3444 br | 3422 br | υ OH (H2O) | ||||
2975 w | 2974 w | 2977 w | 2966 | 2973 | υas CH2, υas CH3 | ||
2937 w | 2938 w | 2941 w | 2955 | 2907 | 2930 | 2937 | υs CH2, υ CH, υs CH3 |
2891 w | 2888 w | 2874 | υs CH2 | ||||
2796 w | υs CH2(NCH2N) | ||||||
2742 w | υs CH2(NCH2N) | ||||||
2719 w | υs CH2(NCH2N) | ||||||
2477 w | 2477 w | 2477 w | υs CH2(NCH2N) | ||||
1683 m | 1679 m | δ OH (H2O) | |||||
1596 s | 1568 s | 1558 s | 1615 | 1554 | 1563 | υas COO | |
1466 m | 1464 s | 1465 s | 1458 | 1450 | 1461 | σ CH2, δas CH3 | |
1408 s | 1417 s | 1430 | 1428 | υs COO | |||
1383 s | 1380 m | 1379 m | 1370 | 1392 | 1376 | ω CH2, δ-α CH, δs CH3 | |
1350 s | 1365 | υs COO | |||||
1343 w | 1351 | δs CH3 | |||||
1299 s | 1301 | ω CH2 | |||||
1241 s | 1240 s | 1240 s | 1234 | ρ CH2 | |||
1078 w | 1077 | ρ-α CH3 | |||||
1009 s | 1010 s | 1010 s | 1007 | υ CN | |||
924 m | 877 w | 949 | 881 | υ CC | |||
814 m | 814 w | 817 w | 825 | υ CN | |||
765 m | 752 br | 758 br | 761 | 671 | 646 | σ COO | |
688 s | 687 s | 690 s | 673 | δ NCN | |||
508 m | 507 m | 509 m | 512 | ω NCN |
1 | 2 | 3 | m/z | |
---|---|---|---|---|
I stage | 120–202 °C, 135 °C endo 31.6%/31.3% −10 H2O | 43–132 °C, 90 °C endo 11.8%/11.9% −4 H2O | 45–133 °C, 90 °C endo 26.8%/28.5% −10 H2O | 17, 18 |
II stage | 202–313 °C, 250 °C endo 48.4%/48.7% −2 hmta | 132–278 °C, 215 °C endo 59.1%/− | 133–260 °C, 225 °C endo 38.6%/− | 12, 14, 17, 18, 30, 42, 44 |
III stage | 313–423 °C, 380 °C exo 12.9%/12.9% −2 HCOO−, +0.5 O2 | 278–450 °C, 315 °C exo, 355 °C exo 22.2%/− | 260–455 °C, 305 °C endo, 365 °C exo 28.1%/− | 12, 14 *, 17, 18, 30 *, 44 |
II and III stages totally: 81.3%/81.4% −6 H2O, −2 hmta, −2 CH3COO−, +0.5 O2 | II and III stages totally: 66.7%/65.0% −2 hmta, −2 C2H5COO−, +0.5O2 | |||
Final product | 7.1 %/7.1% MgO | 6.9%/6.7% MgO | 6.5%/6.5% MgO | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierański, T.; Trzęsowska-Kruszyńska, A.; Świątkowski, M.; Bogdan, M.; Sobczak, P. Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals 2022, 12, 1434. https://doi.org/10.3390/cryst12101434
Sierański T, Trzęsowska-Kruszyńska A, Świątkowski M, Bogdan M, Sobczak P. Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals. 2022; 12(10):1434. https://doi.org/10.3390/cryst12101434
Chicago/Turabian StyleSierański, Tomasz, Agata Trzęsowska-Kruszyńska, Marcin Świątkowski, Marta Bogdan, and Paulina Sobczak. 2022. "Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine" Crystals 12, no. 10: 1434. https://doi.org/10.3390/cryst12101434
APA StyleSierański, T., Trzęsowska-Kruszyńska, A., Świątkowski, M., Bogdan, M., & Sobczak, P. (2022). Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals, 12(10), 1434. https://doi.org/10.3390/cryst12101434