Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Crystal Structure Determination
2.3. Other Measurements
3. Results and Discussion
3.1. Structural Analysis
3.2. FT-IR Analysis
3.3. Thermal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koroteev, P.S.; Ilyukhin, A.B.; Gavrikov, A.V.; Babeshkin, K.A.; Efimov, N.N. Mononuclear Transition Metal Cymantrenecarboxylates as Precursors for Spinel-Type Manganites. Molecules 2022, 27, 1082. [Google Scholar] [CrossRef] [PubMed]
- Krejner, E.; Sierański, T.; Świątkowski, M.; Bogdan, M.; Kruszyński, R. Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules 2020, 25, 5324. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, D.; Xu, X.; Jiang, L.; Si, R.; Shi, W.; Cheng, P. Reversible Formation of Coordination Bonds in Sn-Based Metal-Organic Frameworks for High-Performance Lithium Storage. Nat. Commun. 2021, 12, 3131. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry—A Review. Int. J. Mol. Sci. 2020, 21, 5443. [Google Scholar] [CrossRef] [PubMed]
- Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of Solvents, PH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem. 2019, 12, 295–315. [Google Scholar] [CrossRef]
- Chen, X.-M. Chapter 10-Assembly Chemistry of Coordination Polymers. In Modern Inorganic Synthetic Chemistry; Xu, R., Pang, W., Huo, Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 207–225. ISBN 978-0-444-53599-3. [Google Scholar]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Biradha, K. Crystal Engineering: From Weak Hydrogen Bonds to Co-Ordination Bonds. CrystEngComm 2003, 5, 374–384. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal Engineering: A Holistic View. Angew. Chem. Int. Ed. Engl. 2007, 46, 8342–8356. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G.; Pilati, T.; Liantonio, R.; Meyer, F. Engineering Functional Materials by Halogen Bonding. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1–15. [Google Scholar] [CrossRef]
- Wang, H.-N.; Meng, X.; Dong, L.-Z.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Coordination Polymer-Based Conductive Materials: Ionic Conductivity vs. Electronic Conductivity. J. Mater. Chem. A 2019, 7, 24059–24091. [Google Scholar] [CrossRef]
- Gul, Z.; Khan, S.; Ullah, S.; Ullah, H.; Khan, M.U.; Ullah, M.; Altaf, A.A. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit. Rev. Anal. Chem. 2022; 1–21, online ahead of print. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Yamagami, R.; Sieg, J.P.; Bevilacqua, P.C. Functional Roles of Chelated Magnesium Ions in RNA Folding and Function. Biochemistry 2021, 60, 2374–2386. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Behbehani, G.; Saboury, A.A. A Thermodynamic Study on the Binding of Magnesium with Human Growth Hormone. J. Anal. Calorim. 2007, 89, 857–861. [Google Scholar] [CrossRef]
- Grubbs, R.D.; Maguire, M.E. Magnesium as a Regulatory Cation: Criteria and Evaluation. Magnesium 1987, 6, 113–127. [Google Scholar]
- Ayuk, J.; Gittoes, N.J. Contemporary View of the Clinical Relevance of Magnesium Homeostasis. Ann. Clin. Biochem 2014, 51, 179–188. [Google Scholar] [CrossRef]
- Mildvan, A.S. Role of Magnesium and Other Divalent Cations in ATP-Utilizing Enzymes. Magnesium 1987, 6, 28–33. [Google Scholar]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium Basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef]
- Gong, R.; Liu, Y.; Luo, G.; Yang, L. Dietary Magnesium Intake Affects the Vitamin D Effects on HOMA-β and Risk of Pancreatic β-Cell Dysfunction: A Cross-Sectional Study. Front. Nutr. 2022, 9, 849747. [Google Scholar] [CrossRef]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L.; et al. Magnesium Status and Supplementation Influence Vitamin D Status and Metabolism: Results from a Randomized Trial. Am. J. Clin. Nutr 2018, 108, 1249–1258. [Google Scholar] [CrossRef]
- Petrov, A.S.; Pack, G.R.; Lamm, G. Calculations of Magnesium−Nucleic Acid Site Binding in Solution. J. Phys. Chem. B 2004, 108, 6072–6081. [Google Scholar] [CrossRef]
- Dudev, T.; Cowan, J.A.; Lim, C. Competitive Binding in Magnesium Coordination Chemistry: Water versus Ligands of Biological Interest. J. Am. Chem. Soc. 1999, 121, 7665–7673. [Google Scholar] [CrossRef]
- Piovesan, D.; Profiti, G.; Martelli, P.L.; Casadio, R. The Human “Magnesome”: Detecting Magnesium Binding Sites on Human Proteins. BMC Bioinform. 2012, 13, S10. [Google Scholar] [CrossRef] [PubMed]
- Sieranski, T.; Kruszynski, R. Magnesium Sulphate Complexes with Hexamethylenetetramine and 1,10-Phenanthroline. J. Anal. Calorim 2012, 109, 141–152. [Google Scholar] [CrossRef]
- Yufanyi, D.M.; Ondoh, A.M.; Foba-Tendo, J.; Mbadcam, K.J. Effect of Decomposition Temperature on the Crystallinity of α-Fe2O3 (Hematite) Obtained from an Iron(III)-Hexamethylenetetramine Precursor. Am. J. Chem. 2015, 5, 1–9. [Google Scholar]
- Kirillov, A.M. Hexamethylenetetramine: An Old New Building Block for Design of Coordination Polymers. Coord. Chem. Rev. 2011, 255, 1603–1622. [Google Scholar] [CrossRef]
- Czubacka, E.; Kruszynski, R.; Sieranski, T. The Structure and Thermal Behaviour of Sodium and Potassium Multinuclear Compounds with Hexamethylenetetramine. Struct. Chem. 2012, 23, 451–459. [Google Scholar] [CrossRef]
- Chwa, A.; Kavanagh, K.; Linnebur, S.A.; Fixen, D.R. Evaluation of Methenamine for Urinary Tract Infection Prevention in Older Adults: A Review of the Evidence. Adv. Drug Saf. 2019, 10, 2042098619876749. [Google Scholar] [CrossRef]
- Hirano, K.; Asami, M. Phenolic Resins—100 years of Progress and Their Future. React. Funct. Polym. 2013, 73, 256–269. [Google Scholar] [CrossRef]
- Choi, M.H.; Chung, I.J.; Lee, J.D. Morphology and Curing Behaviors of Phenolic Resin-Layered Silicate Nanocomposites Prepared by Melt Intercalation. Chem. Mater. 2000, 12, 2977–2983. [Google Scholar] [CrossRef]
- STOE & Cie GmbH. X-RED Version 1.18; STOE & Cie GmbH: Darmstadt, Germany, 1999. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Welcher, F.J. Analityczne Zastosowanie Kwasu Wersenowego (Eng. The Analytical Uses of Etylenediamineteraacetic Acid); WNT: Warsaw, Poland, 1963. [Google Scholar]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Shimoni, L.; Glusker, J.P.; Bock, C.W. Energies and Geometries of Isographic Hydrogen-Bonded Networks. 1. The (8) Graph Set. J. Phys. Chem. 1996, 100, 2957–2967. [Google Scholar] [CrossRef]
- Ahuja, I.S.; Singh, R.; Yadava, C.L. Infrared Spectral Evidence for Mono-, Bi- and Tetra-Dentate Behaviour of Hexamethylenetetramine. Proc. Indian Acad. Sci. (Chem. Sci.) 1983, 92, 59–63. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Sutton, C.C.R.; da Silva, G.; Franks, G.V. Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes: Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. Chem.–A Eur. J. 2015, 21, 6801–6805. [Google Scholar] [CrossRef]
- Swiatkowski, M.; Kruszynski, R. Structurally Diverse Coordination Compounds of Zinc as Effective Precursors of Zinc Oxide Nanoparticles with Various Morphologies. Appl. Organomet. Chem. 2019, 33, e4812. [Google Scholar] [CrossRef]
- Kakihana, M.; Akiyama, M. Vibrational Analysis of the Propionate Ion and Its Carbon-13 Derivatives: Infrared Low-Temperature Spectra, Normal-Coordinate Analysis, and Local-Symmetry Valence Force Field. J. Phys. Chem. 1987, 91, 4701–4709. [Google Scholar] [CrossRef]
- Jensen, J.O. Vibrational Frequencies and Structural Determinations of Hexamethylenetetraamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 1347–1364. [Google Scholar] [CrossRef]
- Stoilova, D.; Koleva, V. IR Study of Solid Phases Formed in the Mg(HCOO)2–Cu(HCOO)2–H2O System. J. Mol. Struct. 2000, 553, 131–139. [Google Scholar] [CrossRef]
- Koleva, V.; Stoilova, D. Infrared and Raman Studies of the Solids in the Mg(CH3COO)2–Zn(CH3COO)2–H2O System. J. Mol. Struct. 2002, 611, 1–8. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 3 |
---|---|---|
Empirical formula | C14H46MgN8O14 | C18H54MgN8O14 |
Formula weight | 574.90 | 631.00 |
Crystal system, space group | Triclinic, P-1 | Triclinic, P-1 |
Temperature (K) | 291.0 (3) | 291.0 (3) |
Radiation | MoKα (λ = 0.71073 Å) | CuKα (λ = 1.54178) |
a (Å) | 9.2503 (3) | 8.3713 (4) |
b (Å) | 9.2802 (4) | 9.1600 (7) |
c (Å) | 9.3256 (4) | 12.0634 (6) |
α (°) | 76.621 (4) | 94.210 (6) |
β (°) | 60.933 (4) | 100.128 (3) |
γ (°) | 79.673 (3) | 114.963 (2) |
Volume (Å3) | 678.63 (5) | 814.18 (8) |
Z, Calculated density (g/cm3) | 1, 1.407 | 1, 1.287 |
Absorption coefficient (mm−1) | 0.142 | 1.094 |
Min. and max. transmission | 0.946 and 0.968 | 0.811 and 0.819 |
F(000) | 310 | 342 |
Crystal size (mm) | 0.381 × 0.299 × 0.267 | 0.187 × 0.183 × 0.180 |
2θ range for data collection (°) | 4.526 to 50.04 | 3.77 to 67.64 |
Index ranges | −10 ≤ h ≤ 10, −11 ≤ k ≤ 10, −11 ≤ l≤ 10 | −10 ≤ h ≤ 9, −10 ≤ k ≤ 10, −14 ≤ l ≤ 14 |
Reflections collected | 6794 | 9286 |
Independent reflections | 2386 [Rint = 0.0202, Rsigma = 0.0190] | 2800 [Rint = 0.0287, Rsigma = 0.0275] |
Data/restraints/parameters | 2386/0/169 | 2800/0/189 |
Goodness-of-fit on F2 | 1.084 | 1.059 |
Final R indexes [I > 2σ (I)] | R1 = 0.0329, wR2 = 0.1012 | R1 = 0.0372, wR2 = 0.0979 |
Final R indexes [all data] | R1 = 0.0379, wR2 = 0.1033 | R1 = 0.0377, wR2 = 0.0984 |
Largest diff. peak and hole (e•Å−3) | 0.47 and −0.19 | 0.32 and −0.26 |
Compound 1 | Compound 3 | ||
---|---|---|---|
Mg1—O1 | 2.0350 (9) | Mg1—O1 | 2.0732 (9) |
Mg1—O2 | 2.0695 (10) | Mg1—O2 | 2.0587 (9) |
Mg1—O3 | 2.0349 (9) | Mg1—O3 | 2.0716 (9) |
O1—Mg1—O2 | 87.01 (4) | O1—Mg1—O2 | 90.59 (4) |
O1—Mg1—O2 i | 92.99 (4) | O1—Mg1—O2 ii | 89.41 (4) |
O1—Mg1—O3 | 91.06 (4) | O1—Mg1—O3 | 90.02 (4) |
O1—Mg1—O3i | 88.94 (4) | O1—Mg1—O3 ii | 89.98 (4) |
O2—Mg1—O3 | 87.93 (4) | O2—Mg1—O3 | 90.42 (4) |
O2—Mg1—O3 i | 92.07 (4) | O2—Mg1—O3 ii | 89.58 (4) |
D-H•••A | d(D-H) | d(H•••A) | d(D•••A) | <(DHA) |
---|---|---|---|---|
Compound 1 | ||||
O1—H1O•••O11 | 0.89 | 1.80 | 2.6885(15) | 173.5 |
O1—H1P•••N1 i | 0.76 | 2.07 | 2.8226(15) | 166.7 |
O2—H2O•••O12 ii | 0.85 | 1.93 | 2.7683(16) | 169.9 |
O2—H2P•••N4 iii | 0.80 | 2.07 | 2.8467(15) | 164.1 |
O3—H3O•••O98 iv | 0.86 | 1.80 | 2.6634(14) | 173.0 |
O3—H3P•••N3 v | 0.88 | 1.94 | 2.8182(16) | 170.8 |
O98—H98O•••N2 | 0.91 | 1.90 | 2.8010(16) | 174.8 |
O98—H98P•••O99 vi | 0.92 | 1.80 | 2.7251(18) | 177.8 |
O99—H99O•••O11 vii | 0.85 | 1.97 | 2.7560(18) | 154.3 |
O99—H99P•••O12 viii | 0.90 | 1.86 | 2.729(2) | 161.4 |
Compound 3 | ||||
O1—H1O•••N1 | 0.86 | 2.00 | 2.8386(17) | 163.6 |
O1—H1P•••O11 ix | 0.93 | 1.75 | 2.6716(15) | 171.6 |
O2—H2O•••N4 x | 0.81 | 2.06 | 2.8496(18) | 163.2 |
O2—H2P•••O12 | 0.90 | 1.81 | 2.7053(16) | 173.0 |
O3—H3O•••N2 xi | 0.85 | 1.98 | 2.8271(17) | 177.4 |
O3—H3P•••O99 xii | 0.88 | 1.89 | 2.7618(16) | 170.0 |
O98—H98O•••N3 xiii | 0.91 | 2.09 | 2.9609(19) | 160.0 |
O98—H98P•••O12 | 0.98 | 1.78 | 2.751(2) | 170.1 |
O99—H99O•••O11 xiv | 0.85 | 1.91 | 2.756(2) | 173.8 |
O99—H99P•••O98 xii | 0.93 | 1.88 | 2.800(2) | 170.0 |
1 | 2 | 3 | hmta [44] | Mg(HCOO)2 [45] | Mg(CH3COO)2 [46] | NaCH3CH2COO [43] | Assignment |
---|---|---|---|---|---|---|---|
3427 br | 3444 br | 3422 br | υ OH (H2O) | ||||
2975 w | 2974 w | 2977 w | 2966 | 2973 | υas CH2, υas CH3 | ||
2937 w | 2938 w | 2941 w | 2955 | 2907 | 2930 | 2937 | υs CH2, υ CH, υs CH3 |
2891 w | 2888 w | 2874 | υs CH2 | ||||
2796 w | υs CH2(NCH2N) | ||||||
2742 w | υs CH2(NCH2N) | ||||||
2719 w | υs CH2(NCH2N) | ||||||
2477 w | 2477 w | 2477 w | υs CH2(NCH2N) | ||||
1683 m | 1679 m | δ OH (H2O) | |||||
1596 s | 1568 s | 1558 s | 1615 | 1554 | 1563 | υas COO | |
1466 m | 1464 s | 1465 s | 1458 | 1450 | 1461 | σ CH2, δas CH3 | |
1408 s | 1417 s | 1430 | 1428 | υs COO | |||
1383 s | 1380 m | 1379 m | 1370 | 1392 | 1376 | ω CH2, δ-α CH, δs CH3 | |
1350 s | 1365 | υs COO | |||||
1343 w | 1351 | δs CH3 | |||||
1299 s | 1301 | ω CH2 | |||||
1241 s | 1240 s | 1240 s | 1234 | ρ CH2 | |||
1078 w | 1077 | ρ-α CH3 | |||||
1009 s | 1010 s | 1010 s | 1007 | υ CN | |||
924 m | 877 w | 949 | 881 | υ CC | |||
814 m | 814 w | 817 w | 825 | υ CN | |||
765 m | 752 br | 758 br | 761 | 671 | 646 | σ COO | |
688 s | 687 s | 690 s | 673 | δ NCN | |||
508 m | 507 m | 509 m | 512 | ω NCN |
1 | 2 | 3 | m/z | |
---|---|---|---|---|
I stage | 120–202 °C, 135 °C endo 31.6%/31.3% −10 H2O | 43–132 °C, 90 °C endo 11.8%/11.9% −4 H2O | 45–133 °C, 90 °C endo 26.8%/28.5% −10 H2O | 17, 18 |
II stage | 202–313 °C, 250 °C endo 48.4%/48.7% −2 hmta | 132–278 °C, 215 °C endo 59.1%/− | 133–260 °C, 225 °C endo 38.6%/− | 12, 14, 17, 18, 30, 42, 44 |
III stage | 313–423 °C, 380 °C exo 12.9%/12.9% −2 HCOO−, +0.5 O2 | 278–450 °C, 315 °C exo, 355 °C exo 22.2%/− | 260–455 °C, 305 °C endo, 365 °C exo 28.1%/− | 12, 14 *, 17, 18, 30 *, 44 |
II and III stages totally: 81.3%/81.4% −6 H2O, −2 hmta, −2 CH3COO−, +0.5 O2 | II and III stages totally: 66.7%/65.0% −2 hmta, −2 C2H5COO−, +0.5O2 | |||
Final product | 7.1 %/7.1% MgO | 6.9%/6.7% MgO | 6.5%/6.5% MgO | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierański, T.; Trzęsowska-Kruszyńska, A.; Świątkowski, M.; Bogdan, M.; Sobczak, P. Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals 2022, 12, 1434. https://doi.org/10.3390/cryst12101434
Sierański T, Trzęsowska-Kruszyńska A, Świątkowski M, Bogdan M, Sobczak P. Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals. 2022; 12(10):1434. https://doi.org/10.3390/cryst12101434
Chicago/Turabian StyleSierański, Tomasz, Agata Trzęsowska-Kruszyńska, Marcin Świątkowski, Marta Bogdan, and Paulina Sobczak. 2022. "Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine" Crystals 12, no. 10: 1434. https://doi.org/10.3390/cryst12101434
APA StyleSierański, T., Trzęsowska-Kruszyńska, A., Świątkowski, M., Bogdan, M., & Sobczak, P. (2022). Magnesium Coordination Chemistry: A Case Study of Magnesium Carboxylate Complexes with Hexamethylenetetramine. Crystals, 12(10), 1434. https://doi.org/10.3390/cryst12101434