Wafer-Scale Fabrication of Silicon Film on Lithium Niobate on Insulator (LNOI)
Abstract
:1. Introduction
2. Structure Simulation
3. Structure Fabrication and Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okamoto, K.; Ishida, K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed bragg reflectors. Opt. Lett. 2013, 38, 3530–3533. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.J.; Hu, Y.; Reed, G.T.; Fedeli, J.M. Low loss MMI couplers for high performance MZI modulators. IEEE Photonics Technol. Lett. 2010, 22, 1485–1487. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.S.; Liao, L.; Rubin, D.; Nguyen, H.; Ciftcioglu, B.; Chetrit, Y.; Izhaky, N.; Paniccia, M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 2007, 15, 660–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardes, F.Y.; Reed, G.T.; Emerson, N.G.; Png, C.E. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express 2005, 13, 8845–8854. [Google Scholar] [CrossRef]
- Liu, A.S.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 2004, 427, 615–618. [Google Scholar] [CrossRef]
- Hochberg, M.; Baehr-Jones, T.; Wang, G.X.; Shearn, M.; Harvard, K.; Luo, J.D.; Chen, B.Q.; Shi, Z.W.; Lawson, R.; Sullivan, P.; et al. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 2006, 5, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Koeber, S.; Palmer, R.; Lauermann, M.; Heni, W.; Elder, D.L.; Korn, D.; Woessner, M.; Alloatti, L.; Koenig, S.; Schindler, P.C.; et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl. 2015, 4, e255. [Google Scholar] [CrossRef] [Green Version]
- Eltes, F.; Mai, C.; Caimi, D.; Kroh, M.; Popoff, Y.; Winzer, G.; Petousi, D.; Lischke, S.; Ortmann, J.E.; Czornomaz, L.; et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light. Technol. 2019, 37, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Shao, L.; He, L.; Luke, K.; Morgan, J.; Sun, K.; Gao, J.; Tzu, T.-C.; Shen, Y.; Chen, D.; et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 2022, 10, 1338–1343. [Google Scholar] [CrossRef]
- Vivien, L.; Marris-Morini, D.; Fedeli, J.M.; Rouviere, M.; Damlencourt, J.F.; El Melhaoui, L.; Le Roux, X.; Crozat, P.; Mangeney, J.; Cassan, E.; et al. Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides. Appl. Phys. Lett. 2008, 92, 151114. [Google Scholar] [CrossRef]
- Tian, B.; Wang, Z.; Pantouvaki, M.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room temperature o-band DFB laser array directly grown on (001) silicon. Nano. Lett. 2017, 17, 559–564. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, J.Q.; Guo, J.; Chang, L.; Wang, R.N.; Weng, W.L.; Peters, J.; Xie, W.Q.; Zhang, Z.Y.; Riemensberger, J.; et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 2021, 373, 99–103. [Google Scholar] [CrossRef]
- Yonekura, K.; Jin, L.H.; Takizawa, K. Measurement of dispersion of effective electro-optic coefficients r13e and r33e of non-doped congruent LiNbO3 crystal. Jpn. J. Appl. Phys. 2008, 47, 5503–5508. [Google Scholar] [CrossRef]
- Luke, K.; Kharel, P.; Reimer, C.; He, L.Y.; Loncar, M.; Zhang, M. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 2020, 28, 24452–24458. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Loncar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Xu, M.; He, M.; Zhang, H.; Jian, J.; Pan, Y.; Liu, X.; Chen, L.; Meng, X.; Chen, H.; Li, Z.; et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 2020, 11, 3911. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Kharel, P.; Zhu, D.; Lončar, M. Integrated lithium niobate electro-optic modulators: When performance meets scalability. Optica 2021, 8, 652–667. [Google Scholar] [CrossRef]
- He, M.B.; Xu, M.Y.; Ren, Y.X.; Jian, J.; Ruan, Z.L.; Xu, Y.S.; Gao, S.Q.; Sun, S.H.; Wen, X.Q.; Zhou, L.D.; et al. High-performance hybrid silicon and lithium niobate mach-zehnder modulators for 100 gbit s−1 and beyond. Nat. Photonics. 2019, 13, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Loncar, M. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Wang, D.; Ding, T.T.; Zheng, Y.L.; Chen, X.F. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide. Opt. Express 2019, 27, 15283–15288. [Google Scholar] [CrossRef]
- Mackwitz, P.; Rusing, M.; Berth, G.; Widhalm, A.; Muller, K.; Zrenner, A. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl. Phys. Lett. 2016, 108, 152902. [Google Scholar] [CrossRef]
- Chen, L.; Nagy, J.; Reano, R.M. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt. Mater. Express 2016, 6, 2460–2467. [Google Scholar] [CrossRef]
- Wang, Y.W.; Chen, Z.H.; Cai, L.T.; Jiang, Y.P.; Zhu, H.B.; Hu, H. Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt. Mater. Express 2017, 7, 4018–4028. [Google Scholar] [CrossRef]
- Jian, J.; Xu, P.F.; Chen, H.; He, M.B.; Wu, Z.R.; Zhou, L.D.; Liu, L.; Yang, C.C.; Yu, S.Y. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express 2018, 26, 29651–29658. [Google Scholar] [CrossRef] [PubMed]
- Weigel, P.O.; Zhao, J.; Fang, K.; Al-Rubaye, H.; Trotter, D.; Hood, D.; Mudrick, J.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L.; et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3dB electrical modulation bandwidth. Opt. Express 2018, 26, 23728–23739. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, S.; Chen, J.; Zou, W. A heterogeneous silicon on lithium niobate modulator for ultra-compact and high-performance photonic integrated circuits. IEEE Photonics J. 2021, 13, 4900112. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, H.; Zhang, H.; Cai, L.; Hu, H. Phase modulators in hybrid silicon and lithium niobate thin films. Opt. Mater. Express 2022, 12, 1314–1322. [Google Scholar] [CrossRef]
- Cai, J.; Guo, C.; Lu, C.; Lau, A.P.T.; Chen, P.; Liu, L. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave mach-zehnder modulator. IEEE Photonics J. 2021, 13, 2200206. [Google Scholar] [CrossRef]
- Sun, S.; He, M.; Xu, M.; Gao, S.; Yu, S.; Cai, X. Hybrid silicon and lithium niobate modulator. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 3300112. [Google Scholar] [CrossRef]
- Xu, Q.; Shao, Y.X.; Piao, R.Q.; Chen, F.; Wang, X.; Yang, X.F.; Wong, W.H.; Pun, E.Y.B.; Zhang, D.L. A theoretical study on rib-type photonic wires based on LiNbO3 thin film on insulator. Adv. Theory Simul. 2019, 2, 1900115. [Google Scholar] [CrossRef]
- Yu, X.R.; Wang, M.K.; Li, J.H.; Wu, J.Y.; Hu, Z.F.; Chen, K.X. Study on the single-mode condition for x-cut LNOI rib waveguides based on leakage losses. Opt. Express 2022, 30, 6556–6565. [Google Scholar] [CrossRef]
- Villa, J.J. Additional data on refractive-index of silicon. Appl. Opt. 1972, 11, 2102–2103. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, H.J.; Jiang, Y.H.; Han, X.; Xiao, H.F.; Frigg, A.; Nguyen, T.G.; Boes, A.; Ren, G.H.; Su, Y.K.; et al. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform. Opt. Lett. 2021, 46, 5986–5989. [Google Scholar] [CrossRef]
- Saitoh, E.; Kawaguchi, Y.; Saitoh, K.; Koshiba, M. TE/TM-pass polarizer based on lithium niobate on insulator ridge waveguide. IEEE Photonics J. 2013, 5, 6600610. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhao, X.; Li, Z.; Ke, X.; Wang, C.; Zhou, M.; Li, W.; Huang, K.; Ou, X. Wafer-Scale Fabrication of Silicon Film on Lithium Niobate on Insulator (LNOI). Crystals 2022, 12, 1477. https://doi.org/10.3390/cryst12101477
Chen Y, Zhao X, Li Z, Ke X, Wang C, Zhou M, Li W, Huang K, Ou X. Wafer-Scale Fabrication of Silicon Film on Lithium Niobate on Insulator (LNOI). Crystals. 2022; 12(10):1477. https://doi.org/10.3390/cryst12101477
Chicago/Turabian StyleChen, Yang, Xiaomeng Zhao, Zhongxu Li, Xinjian Ke, Chengli Wang, Min Zhou, Wenqin Li, Kai Huang, and Xin Ou. 2022. "Wafer-Scale Fabrication of Silicon Film on Lithium Niobate on Insulator (LNOI)" Crystals 12, no. 10: 1477. https://doi.org/10.3390/cryst12101477
APA StyleChen, Y., Zhao, X., Li, Z., Ke, X., Wang, C., Zhou, M., Li, W., Huang, K., & Ou, X. (2022). Wafer-Scale Fabrication of Silicon Film on Lithium Niobate on Insulator (LNOI). Crystals, 12(10), 1477. https://doi.org/10.3390/cryst12101477