Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review
Abstract
:1. Introduction
1.1. Market Strategy of GaN HEMT Power Devices
1.2. Market Strategy of GaN HEMT RF Devices
2. Wide Bandgap Semiconductors for Power Devices
2.1. Lattice Structure and Polarization of GaN-Based Semiconductors
2.2. Lateral and Vertical GaN Power Transistors
3. Normally on and off GaN HEMT Power Device Structure
3.1. GaN HEMT Technology (Normally on)
3.2. GaN HEMT Technology (Normally off)
3.2.1. HEMTs with Cascode Configuration (Normally off)
3.2.2. HEMTs with Fluorine Implantation and Thin/Ultrathin Barrier (Normally off)
3.2.3. HEMTs with p-GaN Gate (Normally off)
3.2.4. HEMTs with Recessed Gate (Normally off)
4. Reliability of GaN HEMTs
4.1. Degradation Creation
4.2. Reliability Issues
- Under a high negative VGS, barrier traps and a gate electron are injected onto the surface;
- Under a high on-state VDS, the barrier/buffer traps are injected using hot electrons;
- During material growth, the electrons captured by the deep layers are induced.
4.2.1. Current Collapse
4.2.2. Drain and Gate Lag
4.2.3. Trapping Effects of Surface
4.2.4. Trapping Effect of Bulk
4.2.5. Kink Effect
4.2.6. Runaway Effect
4.2.7. Belly Shape Effect
4.3. Breakdown Voltage in GaN HEMTs Device
5. Challenges for GaN HEMTs Device
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fewson, D. Introduction to Power Electronics; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Baliga, B.J. 1—Introduction. In Wide Bandgap Semiconductor Power Devices; Baliga, B.J., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Power GaN 2021: Epitaxy, Devices, Application and Technology Trends Report. 2021. Available online: http://www.yole.fr/GaN_Power_Epitaxy_Devices_Applications_Technology_Trends_2021.aspx (accessed on 1 May 2021).
- Compound Semiconductor Quarterly Market Monitor: Q3-2020. 2020. Available online: https://www.i-micronews.com/improved-reliability-in-power-gan-will-further-drive-its-market-growth-an-interview-with-transphorm/?cn-reloaded=1 (accessed on 5 November 2020).
- RF GaN 2021: Applications, Players, Technology and Substrates 2021 Report. 2021. Available online: https://s3.i-micronews.com/uploads/2021/06/YINTR21191-GaN_RF_Market_June_2021_Yole_Flyer.pdf (accessed on 1 June 2021).
- Millan, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2013, 29, 2155–2163. [Google Scholar] [CrossRef]
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Milligan, J.; Sheppard, S.; Pribble, W.; Wu, Y.-F.; Muller, G.; Palmour, J. SiC and GaN wide bandgap device technology overview. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 960–964. [Google Scholar]
- Devices, P.G. Materials, Applications and Reliability; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Schweber, B. Use SiC-Based MOSFETs to Improve Power Conversion Efficiency; Digi-Key Electronics: Thief River Falls, MN, USA, 2019. [Google Scholar]
- Ballestín-Fuertes, J.; Muñoz-Cruzado-Alba, J.; Sanz-Osorio, J.F.; Laporta-Puyal, E. Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications. Electronics 2021, 10, 677. [Google Scholar] [CrossRef]
- Marino, F.; Faralli, N.; Ferry, D.; Goodnick, S.; Saraniti, M. Figures of merit in high-frequency and high-power GaN HEMTs. J. Phys. Conf. Ser. 2009, 193, 012040. [Google Scholar] [CrossRef]
- Baliga, B.J. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 1989, 10, 455–457. [Google Scholar] [CrossRef]
- Shur, M.; Davis, R.F. GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance; World Scientific: Toh Tuck, Singapore, 2004; Volume 33. [Google Scholar]
- Nikolaev, V.I.; Stepanov, S.I.; Romanov, A.E.; Bougrov, V.E. 14–Gallium oxide. In Single Crystals of Electronic Materials; Fornari, R., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 487–521. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Accurate calculation of polarization-related quantities in semiconductors. Phys. Rev. B 2001, 63, 193201. [Google Scholar] [CrossRef] [Green Version]
- Rais-Zadeh, M.; Gokhale, V.J.; Ansari, A.; Faucher, M.; Théron, D.; Cordier, Y.; Buchaillot, L.J. Gallium nitride as an electromechanical material. J. Microelectromech. Syst. 2014, 23, 1252–1271. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, R10024. [Google Scholar] [CrossRef] [Green Version]
- Asbeck, P.M. Electronic properties of III-nitride materials and basics of III-nitride FETs. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2019; Volume 102, pp. 1–40. [Google Scholar]
- Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V.J. Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures. J. Phys. Condens. Matter 2002, 14, 3399. [Google Scholar] [CrossRef]
- Pearton, S.; Zolper, J.; Shul, R.; Ren, F.J. GaN: Processing, defects, and devices. J. Appl. Phys. 1999, 86, 1–78. [Google Scholar] [CrossRef]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.; Weimann, N.; Chu, K.; Murphy, M.; Sierakowski, A.; Schaff, W.; Eastman, L.J. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Cros, A.; Garro, N.; Cantarero, A.; Coraux, J.; Renevier, H.; Daudin, B. Raman scattering as a tool for the evaluation of strain in Ga N/Al N quantum dots: The effect of capping. Phys. Rev. B 2007, 76, 165403. [Google Scholar] [CrossRef]
- Pearton, S.; Ren, F.; Zhang, A.; Lee, K.; Reports, E.R. Fabrication and performance of GaN electronic devices. Mater. Sci. Eng. R Rep. 2000, 30, 55–212. [Google Scholar] [CrossRef]
- Grabowski, S.P.; Schneider, M.; Nienhaus, H.; Mönch, W.; Dimitrov, R.; Ambacher, O.; Stutzmann, M. Electron affinity of AlxGa1−xN(0001) surfaces. Appl. Phys. Lett. 2001, 78, 2503–2505. [Google Scholar] [CrossRef]
- Dabiran, A.M.; Wowchak, A.M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Look, D.C.; Chow, P.P. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures. Appl. Phys. Lett. 2008, 93, 082111. [Google Scholar] [CrossRef] [Green Version]
- Kuzmik, J.; Pozzovivo, G.; Ostermaier, C.; Strasser, G.; Pogany, D.; Gornik, E.; Carlin, J.-F.; Gonschorek, M.; Feltin, E.; Grandjean, N. Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. J. Appl. Phys. 2009, 106, 124503. [Google Scholar] [CrossRef]
- Lee, S.R.; Wright, A.F.; Crawford, M.H.; Petersen, G.A.; Han, J.; Biefeld, R.M. The band-gap bowing of AlxGa1−xN alloys. Appl. Phys. Lett. 1999, 74, 3344–3346. [Google Scholar] [CrossRef]
- Palacios, T.; Mishra, U.K. AlGaN/GaN High Electron Mobility Transistors. In Nitride Semiconductor Devices: Principles and Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 211–233. [Google Scholar] [CrossRef]
- He, X.-G.; Zhao, D.-G.; Jiang, D.-S. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin. Phys. B 2015, 24, 067301. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Khan, M.A.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Ueda, H.; Sugimoto, M.; Uesugi, T.; Fujishima, O.; Kachi, T. High current operation of GaN power HEMT. In Proceedings of the ISPSD’05 17th International Symposium on Power Semiconductor Devices and Ics, Santa Barbara, CA, USA, 23–26 May 2005; pp. 311–314. [Google Scholar]
- Schwierz, F.; Ambacher, O. Recent advances in GaN HEMT development. In Proceedings of the 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications EDMO 2003, Orlando, FL, USA, 17–18 November 2003; pp. 204–209. [Google Scholar]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.J. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, Y.; Zhang, J.; Ni, J. The mobility of two-dimensional electron gas in AlGaN/GaN heterostructures with varied Al content. Sci. China Ser. F Inf. Sci. 2008, 51, 780–789. [Google Scholar] [CrossRef]
- Miyoshi, M.; Egawa, T.; Ishikawa, H. Structural characterization of strained AlGaN layers in different Al content AlGaN/GaN heterostructures and its effect on two-dimensional electron transport properties. J. Vac. Sci. Technol. B 2005, 23, 1527–1531. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.; Ozpineci, B. Application-based review of GaN HFETs. In Proceedings of the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 13–15 October 2014; pp. 24–29. [Google Scholar]
- Derluyn, J.; Boeykens, S.; Cheng, K.; Vandersmissen, R.; Das, J.; Ruythooren, W.; Degroote, S.; Leys, M.; Germain, M.; Borghs, G.J. Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J. Appl. Phys. 2005, 98, 054501. [Google Scholar] [CrossRef]
- Hua, M.; Liu, C.; Yang, S.; Liu, S.; Fu, K.; Dong, Z.; Cai, Y.; Zhang, B.; Chen, K.J. GaN-based metal-insulator-semiconductor high-electron-mobility transistors using low-pressure chemical vapor deposition SiN x as gate dielectric. IEEE Electron Device Lett. 2015, 36, 448–450. [Google Scholar] [CrossRef]
- Hashizume, T.; Nishiguchi, K.; Kaneki, S.; Kuzmik, J.; Yatabe, Z. State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Mater. Sci. Semicond. Process. 2018, 78, 85–95. [Google Scholar] [CrossRef]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Asgari, A.; Kalafi, M. The control of two-dimensional-electron-gas density and mobility in AlGaN/GaN heterostructures with Schottky gate. Mater. Sci. Eng. C 2006, 26, 898–901. [Google Scholar] [CrossRef]
- Ren, J.; Tang, C.W.; Feng, H.; Jiang, H.; Yang, W.; Zhou, X.; Lau, K.M.; Sin, J.K. A novel 700 V monolithically integrated Si-GaN ‘ascaded field effect transistor. IEEE Electron Device Lett. 2018, 39, 394–396. [Google Scholar] [CrossRef]
- Xue, P.; Maresca, L.; Riccio, M.; Breglio, G.; Irace, A. Experimental study on the short-circuit instability of cascode GaN HEMTs. IEEE Trans. Electron Devices 2020, 67, 1686–1692. [Google Scholar] [CrossRef]
- Wu, C.-C.; Jeng, S.-L. Comparison of Parasitic Capacitances of Packaged Cascode Gallium Nitride Field-effect Transistors. Sens. Mater. 2018, 30, 453–461. [Google Scholar]
- Elangovan, S.; Cheng, S.; Chang, E.Y. Reliability characterization of gallium nitride MIS-HEMT based cascode devices for power electronic applications. Energies 2020, 13, 2628. [Google Scholar] [CrossRef]
- Lidow, A.; Strydom, J.; de Rooij, M.; Reusch, D. GaN Transistors for Efficient Power Conversion; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 2005, 26, 435–437. [Google Scholar]
- Khan, M.A.; Chen, Q.; Sun, C.; Yang, J.; Blasingame, M.; Shur, M.; Park, H. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors. Appl. Phys. Lett. 1996, 68, 514–516. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Liu, X.; Wang, Y.; Fan, J.; Yang, S.; Yin, H.; Wei, K.; Wang, W.; Gao, H. Monolithic integration of E/D-mode GaN MIS-HEMTs on ultrathin-barrier AlGaN/GaN heterostructure on Si substrates. Appl. Phys. Express 2019, 12, 024001. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Lau, K.M.; Chen, K.J. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode. IEEE Trans. Electron Devices 2006, 53, 2207–2215. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.K.; Moghadam, H.A.; Tanner, P.; Han, J.S.; Dimitrijev, S. Mechanism of Threshold Voltage Shift in p-GaN Gate AlGaN/GaN Transistors. IEEE Electron Device Lett. 2018, 39, 1145–1148. [Google Scholar] [CrossRef]
- Uemoto, Y.; Hikita, M.; Ueno, H.; Matsuo, H.; Ishida, H.; Yanagihara, M.; Ueda, T.; Tanaka, T.; Ueda, D. Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 2007, 54, 3393–3399. [Google Scholar] [CrossRef]
- Jubadi, W.; Packeer, F.; Missous, M. Optimization of Empirical Modelling of Advanced Highly Strained In 0.7 Ga 0.3 As/In 0.52 Al 0.48 As pHEMTs for Low Noise Amplifier. Int. J. Electr. Comput. Eng. 2017, 7, 3393–3399. [Google Scholar]
- Greco, G.; Iucolano, F.; Roccaforte, F. Review of technology for normally-off HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 2018, 78, 96–106. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An overview of normally-off GaN-based high electron mobility transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilt, O.; Knauer, A.; Brunner, F.; Bahat-Treidel, E.; Würfl, J. Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer. In Proceedings of the 2010 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hiroshima, Japan, 6–10 June 2010; pp. 347–350. [Google Scholar]
- Meneghini, M.; Hilt, O.; Wuerfl, J.; Meneghesso, G. Technology and reliability of normally-off GaN HEMTs with p-type gate. Energies 2017, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Efthymiou, L.; Longobardi, G.; Camuso, G.; Chien, T.; Chen, M.; Udrea, F. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices. Appl. Phys. Lett. 2017, 110, 123502. [Google Scholar] [CrossRef]
- Posthuma, N.; You, S.; Liang, H.; Ronchi, N.; Kang, X.; Wellekens, D.; Saripalli, Y.; Decoutere, S. Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance. In Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Žofín Palace, Prague, Czech Republic, 12–16 June 2016; pp. 95–98. [Google Scholar]
- Islam, N.; Yusof, N.S.; Mohamed, M.F.P.; Syamsul, M.; Khan, M.F.A.J.; Ghazali, N.A.; Hairi, M.H. Optimization of 1-µm gate length InGaAs-InAlAs pHEMT. Microelectron. Int. 2022. [Google Scholar] [CrossRef]
- Kinoshita, T.; Obata, T.; Yanagi, H.; Inoue, S.-I. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 2013, 102, 012105. [Google Scholar] [CrossRef]
- Roccaforte, F.; Frazzetto, A.; Greco, G.; Giannazzo, F.; Fiorenza, P.; Nigro, R.L.; Saggio, M.; Leszczyński, M.; Pristawko, P.; Raineri, V. Critical issues for interfaces to p-type SiC and GaN in power devices. Appl. Surf. Sci. 2012, 258, 8324–8333. [Google Scholar] [CrossRef]
- Callsen, G.; Wagner, M.; Kure, T.; Reparaz, J.; Bügler, M.; Brunnmeier, J.; Nenstiel, C.; Hoffmann, A.; Hoffmann, M.; Tweedie, J. Optical signature of Mg-doped GaN: Transfer processes. Phys. Rev. B 2012, 86, 075207. [Google Scholar] [CrossRef] [Green Version]
- Packeer, F.; Mohamad Isa, M.; Mat Jubadi, W.; Ian, K.W.; Missous, M. Fabrication and characterization of tensile In0.3Al0.7As barrier and compressive In0.7Ga0.3 As channel pHEMTs having extremely low gate leakage for low-noise applications. J. Phys. D Appl. Phys. 2013, 46, 264002. [Google Scholar] [CrossRef]
- Kaneko, S.; Kuroda, M.; Yanagihara, M.; Ikoshi, A.; Okita, H.; Morita, T.; Tanaka, K.; Hikita, M.; Uemoto, Y.; Takahashi, S. Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 41–44. [Google Scholar]
- Sayadi, L.; Iannaccone, G.; Sicre, S.; Häberlen, O.; Curatola, G. Threshold voltage instability in p-GaN gate AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2018, 65, 2454–2460. [Google Scholar] [CrossRef]
- Packeer Mohamed, M.F.; Mohamed Omar, M.F.; Akbar Jalaludin Khan, M.F.; Ghazali, N.A.; Hairi, M.H.; Falina, S.; Samsol Baharin, M.S.N. New Submicron Low Gate Leakage In0.52Al0.48As-In0.7Ga0.3As pHEMT for Low-Noise Applications. Micromachines 2021, 12, 1497. [Google Scholar] [CrossRef]
- Zhou, G.; Wan, Z.; Yang, G.; Jiang, Y.; Sokolovskij, R.; Yu, H.; Xia, G. Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates. IEEE Trans. Electron Devices 2020, 67, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.-C.; Liu, C.-H.; Huang, C.-R.; Chiu, C.-C.; Wang, H.-C.; Kao, H.-L.; Lin, S.-Y.; Chien, F.-T. Normally-Off p-GaN Gated AlGaN/GaN MIS-HEMTs with ALD-Grown Al2O3/AlN Composite Gate Insulator. Membranes 2021, 11, 727. [Google Scholar] [CrossRef]
- Ngo, T.H.; Comyn, R.; Chenot, S.; Brault, J.; Damilano, B.; Vezian, S.; Frayssinet, E.; Cozette, F.; Defrance, N.; Lecourt, F. Combination of selective area sublimation of p-GaN and regrowth of AlGaN for the co-integration of enhancement mode and depletion mode high electron mobility transistors. Solid-State Electron. 2022, 188, 108210. [Google Scholar] [CrossRef]
- Xu, N.; Hao, R.; Chen, F.; Zhang, X.; Zhang, H.; Zhang, P.; Ding, X.; Song, L.; Yu, G.; Cheng, K. Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2018, 113, 152104. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Fu, L.; Huang, R.; Zhao, S.; Zhang, J.; Zhang, J.; Hao, Y. Investigation of normally-off GaN-based p-channel and n-channel heterojunction field-effect transistors for monolithic integration. Results Phys. 2021, 24, 104209. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Chang, Y.-S.; Li, B.-H.; Wang, H.-C.; Kao, H.-L.; Hu, C.-W.; Xuan, R. High-performance normally off p-GaN gate HEMT with composite AlN/Al 0.17 Ga 0.83 N/Al 0.3 Ga 0.7 N barrier layers design. IEEE J. Electron Devices Soc. 2018, 6, 201–206. [Google Scholar] [CrossRef]
- Su, S.; Zhong, Y.; Zhou, Y.; Gao, H.; Zhan, X.; Chen, X.; Guo, X.; Sun, Q.; Zhang, Z.; Bi, W. A p-GaN-Gated Hybrid Anode Lateral Diode with a Thicker AlGaN Barrier Layer. Phys. Status Solidi 2020, 217, 1900781. [Google Scholar] [CrossRef]
- Wang, H.-C.; Liu, C.-H.; Huang, C.-R.; Chiu, H.-C.; Kao, H.-L.; Liu, X. Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate. Micromachines 2022, 13, 807. [Google Scholar] [CrossRef]
- Sun, C.; Hao, R.; Xu, N.; He, T.; Shi, F.; Yu, G.; Song, L.; Huang, Z.; Huang, R.; Zhao, Y. Normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors using oxygen plasma treatment. Appl. Phys. Express 2019, 12, 051001. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ho, Y.-L.; Huang, T.-Y.; Huang, D.-W.; Wu, C.-H. Investigation of Normally-Off p-GaN/AlGaN/GaN HEMTs Using a Self-Terminating Etching Technique with Multi-Finger Architecture Modulation for High Power Application. Micromachines 2021, 12, 432. [Google Scholar] [CrossRef]
- Zhou, G.; Zeng, F.; Gao, R.; Wang, Q.; Cheng, K.; Li, L.; Xiang, P.; Du, F.; Xia, G.; Yu, H. p-GaN Gate HEMTs With 10.6 V Maximum Gate Drive Voltages by Mg Doping Engineering. IEEE Trans. Electron Devices 2022, 69, 2282–2286. [Google Scholar] [CrossRef]
- Taube, A.; Kamiński, M.; Ekielski, M.; Kruszka, R.; Jankowska-Śliwińska, J.; Michałowski, P.P.; Zdunek, J.; Szerling, A. Selective etching of p-GaN over Al0.25Ga0.75N in Cl2/Ar/O2 ICP plasma for fabrication of normally-off GaN HEMTs. Mater. Sci. Semicond. Process. 2021, 122, 105450. [Google Scholar] [CrossRef]
- Wang, H.; Mao, W.; Zhao, S.; He, Y.; Chen, J.; Du, M.; Zheng, X.; Wang, C.; Zhang, C.; Zhang, J. Unidirectional p-GaN gate HEMT with composite source-drain field plates. Sci. China Inf. Sci. 2022, 65, 129405. [Google Scholar] [CrossRef]
- Zhong, Y.; Su, S.; Chen, X.; Zhou, Y.; He, J.; Gao, H.; Zhan, X.; Guo, X.; Liu, J.; Sun, Q.; et al. Normally-off HEMTs With Regrown p-GaN Gate and Low-Pressure Chemical Vapor Deposition SiNx Passivation by Using an AlN Pre-Layer. IEEE Electron Device Lett. 2019, 40, 1495–1498. [Google Scholar] [CrossRef]
- Lükens, G.; Hahn, H.; Kalisch, H.; Vescan, A. Self-Aligned Process for Selectively Etched p-GaN-Gated AlGaN/GaN-on-Si HFETs. IEEE Trans. Electron Devices 2018, 65, 3732–3738. [Google Scholar] [CrossRef]
- Wang, H.; Mao, W.; Zhao, S.; Chen, J.; Du, M.; Zheng, X.; Wang, C.; Zhang, C.; Zhang, J.; Hao, Y. Reverse blocking p-GaN gate AlGaN/GaN HEMTs with hybrid p-GaN ohmic drain. Superlattices Microstruct. 2021, 156, 106931. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chiu, H.-C.; Kao, H.-L.; Wang, H.-C.; Liu, C.-H.; Huang, C.-R.; Chen, S.-W. High Thermal Dissipation of Normally off p-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Micromachines 2021, 12, 509. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Wang, C.; Zheng, X.; Ma, X.-h.; Bai, J.; Cheng, B.; Liu, R.; Li, A.; Zhao, Y.; et al. The influence of lightly-doped p-GaN cap layer on p-GaN/AlGaN/GaN HEMT. Semicond. Sci. Technol. 2022, 37, 075005. [Google Scholar] [CrossRef]
- Rolland, G.; Rodriguez, C.; Gommé, G.; Boucherif, A.; Chakroun, A.; Bouchilaoun, M.; Pepin, M.C.; El Hamidi, F.; Maher, S.; Arès, R.; et al. High Power Normally-OFF GaN/AlGaN HEMT with Regrown p Type GaN. Energies 2021, 14, 6098. [Google Scholar] [CrossRef]
- Kumar, V.; Kuliev, A.; Tanaka, T.; Otoki, Y.; Adesida, I. High transconductance enhancement-mode AlGaN/GaN HEMTs on SiC substrate. In Electronics Letters; Institution of Engineering and Technology: Stevenage, UK, 2003; Volume 39, pp. 1758–1760. [Google Scholar]
- Pu, T.F. Study on Normally-off AlGaN/GaN Heterostructure Field-Effect Transistors with P-GaN Cap Layer. Ph.D. Thesis, Tokushima University, Tokushima, Japan, 2019. [Google Scholar]
- Hu, Q.; Li, S.; Li, T.; Wang, X.; Li, X.; Wu, Y. Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and HighHigh- κ Dielectric. IEEE Electron Device Lett. 2018, 39, 1377–1380. [Google Scholar] [CrossRef]
- He, Y.; Gao, H.; Wang, C.; Zhao, Y.; Lu, X.; Zhang, C.; Zheng, X.; Guo, L.; Ma, X.; Hao, Y. Comparative Study Between Partially and Fully Recessed-Gate Enhancement-Mode AlGaN/GaN MIS HEMT on the Breakdown Mechanism. Phys. Status Solidi 2019, 216, 1900115. [Google Scholar] [CrossRef]
- Zhang, J.; He, L.; Li, L.; Ni, Y.; Que, T.; Liu, Z.; Wang, W.; Zheng, J.; Huang, Y.; Chen, J.; et al. High-Mobility Normally OFF Al2O3/AlGaN/GaN MISFET With Damage-Free Recessed-Gate Structure. IEEE Electron Device Lett. 2018, 39, 1720–1723. Available online: https://digital-library.theiet.org/content/journals/10.1049/el_20031124 (accessed on 30 September 2018). [CrossRef]
- Fiorenza, P.; Greco, G.; Iucolano, F.; Patti, A.; Roccaforte, F. Channel Mobility in GaN Hybrid MOS-HEMT Using SiO2 as Gate Insulator. IEEE Trans. Electron Devices 2017, 64, 2893–2899. [Google Scholar] [CrossRef]
- He, J.; Cheng, W.C.; Wang, Q.; Cheng, K.; Yu, H.; Chai, Y. Recent Advances in GaN-Based Power HEMT Devices. Adv. Electron. Mater. 2021, 7, 2001045. [Google Scholar] [CrossRef]
- Hua, M.; Cai, X.; Yang, S.; Zhang, Z.; Zheng, Z.; Wang, N.; Chen, K.J. Enhanced Gate Reliability in GaN MIS-FETs by Converting the GaN Channel into Crystalline Gallium Oxynitride. ACS Appl. Electron. Mater. 2019, 1, 642–648. [Google Scholar] [CrossRef]
- Acurio, E.; Crupi, F.; Magnone, P.; Trojman, L.; Iucolano, F. Impact of AlN layer sandwiched between the GaN and the Al2O3 layers on the performance and reliability of recessed AlGaN/GaN MOS-HEMTs. Microelectron. Eng. 2017, 178, 42–47. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High-k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef]
- Robertson, J.; Falabretti, B.J. Band offsets of high K gate oxides on III-V semiconductors. J. Appl. Phys. 2006, 100, 014111. [Google Scholar] [CrossRef]
- Reddy, B.P.K.; Teja, K.B.R.; Kandpal, K. Investigation on High-κ Dielectric for Low Leakage AlGaN/GaN MIS-HEMT Device, Using Material Selection Methodologies. Semiconductors 2018, 52, 420–430. [Google Scholar] [CrossRef]
- Khan, M.A.; Hu, X.; Sumin, G.; Lunev, A.; Yang, J.; Gaska, R.; Shur, M.S. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 2000, 21, 63–65. [Google Scholar] [CrossRef]
- Eller, B.S.; Yang, J.; Nemanich, R.J. Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A Vac. Surf. Film. 2013, 31, 050807. [Google Scholar] [CrossRef]
- Ochiai, M.; Akita, M.; Ohno, Y.; Kishimoto, S.; Maezawa, K.; Mizutani, T. AlGaN/GaN Heterostructure Metal-Insulator-Semiconductor High-Electron-Mobility Transistors with Si3N4 Gate Insulator. Jpn. J. Appl. Phys. 2003, 42, 2278–2280. [Google Scholar] [CrossRef]
- Lee, C.-T.; Chen, H.-W.; Lee, H.-Y. Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN. Appl. Phys. Lett. 2003, 82, 4304–4306. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S.; Tang, Z.; Jiang, Q.; Liu, C.; Wang, M.; Chen, K.J. Al2O3/AlN/GaN MOS-Channel-HEMTs With an AlN Interfacial Layer. IEEE Electron Device Lett. 2014, 35, 723–725. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, Q.; Yang, S.; Zhou, C.; Chen, K.J. Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film. IEEE Electron Device Lett. 2012, 33, 516–518. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Shih, W.-C.; Lin, Y.-C.; Hsu, H.-T.; Hsu, H.-H.; Huang, Y.-X.; Lin, T.-W.; Wu, C.-H.; Wu, W.-H.; Maa, J.-S.; et al. Improved linearity and reliability in GaN metal–oxide–semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric. Jpn. J. Appl. Phys. 2016, 55, 04EG04. [Google Scholar] [CrossRef]
- Deen, D.A.; Storm, D.F.; Bass, R.; Meyer, D.J.; Katzer, D.S.; Binari, S.C.; Lacis, J.W.; Gougousi, T. Atomic layer deposited Ta2O5 gate insulation for enhancing breakdown voltage of AlN/GaN high electron mobility transistors. Appl. Phys. Lett. 2011, 98, 023506. [Google Scholar] [CrossRef] [Green Version]
- Rawat, A.; Meer, M.; Surana, V.k.; Bhardwaj, N.; Pendem, V.; Garigapati, N.S.; Yadav, Y.; Ganguly, S.; Saha, D. Thermally Grown TiO2 and Al2O3 for GaN-Based MOS-HEMTs. IEEE Trans. Electron Devices 2018, 65, 3725–3731. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, C.; Ng, K.W.; Tang, C.W.; Lau, K.M. High-Performance AlGaN/GaN/Si Power MOSHEMTs With ZrO2 Gate Dielectric. IEEE Trans. Electron Devices 2018, 65, 5337–5342. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Zhang, B.; Tao, Q.; Wang, H.; Cao, Q.; Huang, C.; Liu, J.; Mo, J.; Wu, W.; et al. Improved fabrication of fully-recessed normally-off SiN/SiO2/GaN MISFET based on the self-terminated gate recess etching technique. Solid-State Electron. 2021, 177, 107927. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, C.W.; Lau, K.M. Enhancement-Mode GaN MOS-HEMTs With Recess-Free Barrier Engineering and High-k ZrO2 Gate Dielectric. IEEE Electron Device Lett. 2018, 39, 405–408. [Google Scholar] [CrossRef]
- Asubar, J.T.; Kawabata, S.; Tokuda, H.; Yamamoto, A.; Kuzuhara, M. Enhancement-Mode AlGaN/GaN MIS-HEMTs With High VTH and High IDmax Using Recessed-Structure With Regrown AlGaN Barrier. IEEE Electron Device Lett. 2020, 41, 693–696. [Google Scholar] [CrossRef]
- He, J.; Wang, Q.; Zhou, G.; Li, W.; Jiang, Y.; Qiao, Z.; Tang, C.; Li, G.; Yu, H. Normally-OFF AlGaN/GaN MIS-HEMTs With Low R ON and V th Hysteresis by Functioning In-situ SiN x in Regrowth Process. IEEE Electron Device Lett. 2022, 43, 529–532. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, Z.; Wei, J.; Lei, J.; Tang, G.; Fu, K.; Cai, Y.; Zhang, B.; Chen, K.J. Integration of LPCVD-SiNx gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 11–14. [Google Scholar]
- Zhang, J.; He, L.; Li, L.; Ni, Y.; Que, T.; Liu, Z.; Wang, W.; Zheng, J.; Huang, Y.; Chen, J.; et al. A balancing method for low Ron and high Vth normally-off GaN MISFET by preserving a damage-free thin AlGaN barrier layer. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 224–227. [Google Scholar]
- Cai, X.; Hua, M.; Zhang, Z.; Yang, S.; Zheng, Z.; Cai, Y.; Chen, K.J.; Wang, N. Atomic-scale identification of crystalline GaON nanophase for enhanced GaN MIS-FET channel. Appl. Phys. Lett. 2019, 114, 053109. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wang, X.; Wang, C.; Huang, C.; He, J.; Wang, M.; Mo, J.; Hu, Y.; Wu, W. Improved Performance of Fully-recessed High-threshold-voltage GaN MIS-HEMT with In Situ H2/N2 Plasma Pretreatment. IEEE Electron Device Lett. 2022, 43, 1021–1024. [Google Scholar] [CrossRef]
- Azam, F.; Tanneeru, A.; Lee, B.; Misra, V. Engineering a Unified Dielectric Solution for AlGaN/GaN MOS-HFET Gate and Access Regions. IEEE Trans. Electron Devices 2020, 67, 881–887. [Google Scholar] [CrossRef]
- He, L.; Li, L.; Yang, F.; Zheng, Y.; Zhang, J.; Que, T.; Liu, Z.; Zhang, J.; Wu, Q.; Liu, Y. Correlating device behaviors with semiconductor lattice damage at MOS interface by comparing plasma-etching and regrown recessed-gate Al2O3/GaN MOS-FETs. Appl. Surf. Sci. 2021, 546, 148710. [Google Scholar] [CrossRef]
- Greco, G.; Fiorenza, P.; Iucolano, F.; Severino, A.; Giannazzo, F.; Roccaforte, F. Conduction Mechanisms at Interface of AlN/SiN Dielectric Stacks with AlGaN/GaN Heterostructures for Normally-off High Electron Mobility Transistors: Correlating Device Behavior with Nanoscale Interfaces Properties. ACS Appl. Mater. Interfaces 2017, 9, 35383–35390. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Liang, Y.; Mitrovic, I.Z.; Wen, H.; Liu, W.; Zhao, C. Low ON-State Resistance Normally-OFF AlGaN/GaN MIS-HEMTs With Partially Recessed Gate and ZrOx Charge Trapping Layer. IEEE Trans. Electron Devices 2021, 68, 4310–4316. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, X.; Zhang, P.; Zhang, H.; Zhang, L.; Deng, X.; Fan, Y.; Yu, G.; Dong, Z.; Fu, H. Low Threshold Voltage Shift in AlGaN/GaN MIS-HEMTs on Si Substrate Using SiNx/SiON as Composite Gate Dielectric. Electronics 2022, 11, 895. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, L.; Zhang, A.; Chen, B.; Jin, Y.; Shi, Y.; Wang, Z.; Chen, W.; Zhang, B. 7.6 V Threshold Voltage High-Performance Normally-Off Al2O3 GaN MOSFET Achieved by Interface Charge Engineering. IEEE Electron Device Lett. 2016, 37, 165–168. [Google Scholar] [CrossRef]
- Biswas, D.; Tsuboi, T.; Egawa, T. GaN/InGaN double quantum well (DQW) gate structure for GaN-on-Si based normally-off AlGaN/GaN high electron mobility transistors (HEMTs). Mater. Sci. Semicond. Process. 2021, 135, 106109. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Liu, J.; Li, M.; He, Y.; Wang, M.; Yu, M.; Wu, W.; Zhou, Y.; Dai, G. Normally-off fully recess-gated GaN metal–insulator–semiconductor field-effect transistor using Al2O3/Si3N4 bilayer as gate dielectrics. Appl. Phys. Express 2017, 10, 106502. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, M.; Du, Z.; Yan, X.; Cheng, K.; Clavel, M.; Hudait, M.K.; Kravchenko, I.; Wang, H.; Zhang, Y. Tri-gate GaN junction HEMT. Appl. Phys. Lett. 2020, 117, 143506. [Google Scholar] [CrossRef]
- Nela, L.; Zhu, M.; Ma, J.; Matioli, E. High-Performance Nanowire-Based E-Mode Power GaN MOSHEMTs With Large Work-Function Gate Metal. IEEE Electron Device Lett. 2019, 40, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Hussain, K.; Talesara, V.; Razzak, T.; Gaevski, M.; Mollah, S.; Rajan, S.; Khan, A.; Lu, W. High-Current-Density Enhancement-Mode Ultrawide-Bandgap AlGaN Channel Metal–Insulator–Semiconductor Heterojunction Field-Effect Transistors with a Threshold Voltage of 5 V. Phys. Status Solidi–Rapid Res. Lett. 2021, 15, 2000576. [Google Scholar] [CrossRef]
- An, H.D.; Min, S.R.; Lee, S.H.; Park, J.; Kim, G.U.; Yoon, Y.J.; Seo, J.H.; Cho, M.S.; Jang, J.; Bae, J.-H.J.; et al. Fabrication and Performances of Recessed Gate AlGaN/GaN MOSFETs with Si3N4/TiO2 Stacked Dual Gate Dielectric. J. Semicond. Technol. Sci. 2022, 22, 1598–1657. [Google Scholar] [CrossRef]
- Medjdoub, F.; Carlin, J.; Gaquiere, C.; Grandjean, N.; Kohn, E. Status of the emerging InAlN/GaN power HEMT technology. Open Electr. Electron. Eng. J. 2008, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I. Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans. Electron Devices 2006, 53, 356–362. [Google Scholar] [CrossRef]
- Saito, W.; Nitta, T.; Kakiuchi, Y.; Saito, Y.; Tsuda, K.; Omura, I.; Yamaguchi, M. Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure. IEEE Trans. Electron Devices 2007, 54, 1825–1830. [Google Scholar] [CrossRef]
- Karmalkar, S.; Mishra, U.K. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans. Electron Devices 2001, 48, 1515–1521. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ando, Y.; Nakayama, T.; Hataya, K.; Miyamoto, H.; Inoue, T.; Senda, M.; Hirata, K.; Kosaki, M.; Shibata, N.; et al. High-power recessed-gate AlGaN-GaN HFET with a field-modulating plate. IEEE Trans. Electron Devices 2004, 51, 2217–2222. [Google Scholar] [CrossRef]
- Zanoni, E.; Meneghini, M.; Chini, A.; Marcon, D.; Meneghesso, G. AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction. IEEE Trans. Electron Devices 2013, 60, 3119–3131. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Tazzoli, A.; Stocco, A.; Chini, A.; Zanoni, E. Reliability issues of gallium nitride high electron mobility transistors. Int. J. Microw. Wirel. Technol. 2010, 2, 39–50. [Google Scholar] [CrossRef]
- Hashizume, T.; Kotani, J.; Hasegawa, H. Leakage mechanism in GaN and AlGaN Schottky interfaces. Appl. Phys. Lett. 2004, 84, 4884–4886. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.J.; Dang, X.Z.; Yu, E.T. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 2000, 88, 5951–5958. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, S.; Ohno, Y.; Kishimoto, S.; Maezawa, K.; Mizutani, T. Large Gate Leakage Current in AlGaN/GaN High Electron Mobility Transistors. Jpn. J. Appl. Phys. 2002, 41, 5125–5126. [Google Scholar] [CrossRef]
- Cao, X.A.; Stokes, E.B.; Sandvik, P.M.; LeBoeuf, S.F.; Kretchmer, J.; Walker, D. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett. 2002, 23, 535–537. [Google Scholar] [CrossRef]
- Karmalkar, S.; Sathaiya, D.M.; Shur, M.S. Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2003, 82, 3976–3978. [Google Scholar] [CrossRef]
- Liu, Z.H.; Ng, G.I.; Arulkumaran, S.; Maung, Y.K.T.; Zhou, H. Temperature-dependent forward gate current transport in atomic-layer-deposited Al2O3/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor. Appl. Phys. Lett. 2011, 98, 163501. [Google Scholar] [CrossRef]
- Tan, W.; Houston, P.; Parbrook, P.; Wood, D.; Hill, G.; Whitehouse, C. Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors. Appl. Phys. Lett. 2002, 80, 3207–3209. [Google Scholar] [CrossRef]
- Xu, W.; Rao, H.; Bosman, G. Evidence of space charge limited flow in the gate current of AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2012, 100, 223504. [Google Scholar] [CrossRef] [Green Version]
- Arslan, E.; Altındal, Ş.; Özçelik, S.; Ozbay, E. Dislocation-governed current-transport mechanism in (Ni/Au)–AlGaN/AlN/GaN heterostructures. J. Appl. Phys. 2009, 105, 023705. [Google Scholar] [CrossRef] [Green Version]
- Binari, S.C.; Ikossi, K.; Roussos, J.A.; Kruppa, W.; Doewon, P.; Dietrich, H.B.; Koleske, D.D.; Wickenden, A.E.; Henry, R.L. Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2001, 48, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Cai, X.; Du, C.; Liu, H.; Zhang, Y.; Duan, X.; Zhu, J. An Overview on Analyses and Suppression Methods of Trapping Effects in AlGaN/GaN HEMTs. IEEE Access 2021, 10, 21759–21773. [Google Scholar] [CrossRef]
- Khan, M.A.; Shur, M.S.; Chen, Q.C.; Kuznia, J.N. Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. In Electronics Letters; Institution of Engineering and Technology: Stevenage, UK, 1994; Volume 30, pp. 2175–2176. Available online: https://digital-library.theiet.org/content/journals/10.1049/el_19941461 (accessed on 1 September 2022).
- Wen, C.P. Proposed GaN HFET current collapse mechanism. In Proceedings of the 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China, 4–7 December 2005; p. 4. [Google Scholar]
- Hasegawa, H.; Inagaki, T.; Ootomo, S.; Hashizume, T.J. Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2003, 21, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wei, K.; Ma, X.-H.; Hou, B.; Liu, G.-G.; Zhang, Y.-C.; Wang, X.-H.; Zheng, Y.-K.; Huang, S.; Li, Y.-K. Reduced reverse gate leakage current for GaN HEMTs with 3 nm Al/40 nm SiN passivation layer. Appl. Phys. Lett. 2019, 114, 013503. [Google Scholar] [CrossRef]
- Tirado, J.M.; Sanchez-Rojas, J.L.; Izpura, J.I. Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices. Semicond. Sci. Technol. 2006, 21, 1150–1159. [Google Scholar] [CrossRef]
- Tirado, J.M.; Sanchez-Rojas, J.L.; Izpura, J.I. 2D simulation of static surface states in AlGaN/GaN HEMT and GaN MESFET devices. Semicond. Sci. Technol. 2005, 20, 864–869. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Manfra, M. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices Microstruct. 2003, 34, 33–53. [Google Scholar] [CrossRef]
- Hu, W.D.; Chen, X.S.; Yin, F.; Zhang, J.B.; Lu, W. Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors. J. Appl. Phys. 2009, 105, 084502. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, J.; Li, M.; Wang, H.; Tao, Q.; Zhang, B.; Wu, W. Study on the charging current of surface traps in AlGaN/GaN high electron mobility transistors with a slot gate structure. Appl. Phys. Lett. 2019, 115, 152105. [Google Scholar] [CrossRef]
- Godfrey, D.; Nirmal, D.; Arivazhagan, L.; Godwinraj, D.; Mohan Kumar, N.; Chen, Y.; Yeh, W. Current collapse degradation in GaN High Electron Mobility Transistor by virtual gate. Microelectron. J. 2021, 118, 105293. [Google Scholar] [CrossRef]
- Joh, J.; Alamo, J.A.d. A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors. IEEE Trans. Electron Devices 2011, 58, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Feng, S.; Zhang, Y.; Yang, J. Identifying the spatial position and properties of traps in GaN HEMTs using current transient spectroscopy. Microelectron. Reliab. 2016, 63, 46–51. [Google Scholar] [CrossRef]
- Vigneshwara Raja, P.; Nallatamby, J.-C.; DasGupta, N.; DasGupta, A. Trapping effects on AlGaN/GaN HEMT characteristics. Solid-State Electron. 2021, 176, 107929. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Balakrishnan, V.R.; Panwar, B.S.; Muralidharan, R. On the Origin of Kink Effect in Current–Voltage Characteristics of AlGaN/GaN High Electron Mobility Transistors. IEEE Trans. Electron Devices 2013, 60, 3351–3357. [Google Scholar] [CrossRef]
- Kang, Y.; Sung, H.-k.; Kim, H. Investigation of kink effect in normally-off AlGaN/GaN recessed-gate MOS-heterostructure FETs. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016, 34, 052202. [Google Scholar] [CrossRef]
- Brunel, L.; Lambert, B.; Carisetti, D.; Malbert, N.; Curutchet, A.; Labat, N. Electrical Runaway in AlGaN/GaN HEMTs: Physical Mechanisms and Impact on Reliability. IEEE Trans. Electron Devices 2017, 64, 1548–1553. [Google Scholar] [CrossRef]
- Lambert, B.; Thorpe, J.; Behtash, R.; Schauwecker, B.; Bourgeois, F.; Jung, H.; Bataille, J.; Mezenge, P.; Gourdon, C.; Ollivier, C. Reliability data’s of 0.5 μm AlGaN/GaN on SiC technology qualification. Microelectron. Reliab. 2012, 52, 2200–2204. [Google Scholar] [CrossRef]
- Brunel, L.; Lambert, B.; Mezenge, P.; Bataille, J.; Floriot, D.; Grünenpütt, J.; Blanck, H.; Carisetti, D.; Gourdel, Y.; Malbert, N.; et al. Analysis of Schottky gate degradation evolution in AlGaN/GaN HEMTs during HTRB stress. Microelectron. Reliab. 2013, 53, 1450–1455. [Google Scholar] [CrossRef]
- Rzin, M.; Curutchet, A.; Labat, N.; Malbert, N.; Brunel, L.; Lambert, B. Schottky gate of AlGaN/GaN HEMTs: Investigation with DC and low frequency noise measurements after 7000 hours HTOL test. In Proceedings of the 2015 International Conference on Noise and Fluctuations (ICNF), Xian, China, 2–6 June 2015; pp. 1–4. [Google Scholar]
- Wuerfl, J.; Bahat-Treidel, E.; Brunner, F.; Cho, E.; Hilt, O.; Ivo, P.; Knauer, A.; Kurpas, P.; Lossy, R.; Schulz, M.; et al. Reliability issues of GaN based high voltage power devices. Microelectron. Reliab. 2011, 51, 1710–1716. [Google Scholar] [CrossRef]
- Bahat-Treidel, E.; Hilt, O.; Brunner, F.; Wurfl, J.; Trankle, G. Punchthrough-Voltage Enhancement of AlGaN/GaN HEMTs Using AlGaN Double-Heterojunction Confinement. IEEE Trans. Electron Devices 2008, 55, 3354–3359. [Google Scholar] [CrossRef]
- Kucharski, R.; Sochacki, T.; Lucznik, B.; Bockowski, M. Growth of bulk GaN crystals. J. Appl. Phys. 2020, 128, 050902. [Google Scholar] [CrossRef]
- Sakurai, H.; Omori, M.; Yamada, S.; Furukawa, Y.; Suzuki, H.; Narita, T.; Kataoka, K.; Horita, M.; Bockowski, M.; Suda, J.; et al. Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Appl. Phys. Lett. 2019, 115, 142104. [Google Scholar] [CrossRef]
- Sangwan, V.; Tan, C.M.; Kapoor, D.; Chiu, H.C. Electromagnetic Induced Failure in GaN-HEMT High-Frequency Power Amplifier. IEEE Trans. Ind. Electron. 2020, 67, 5708–5716. [Google Scholar] [CrossRef]
- Islam, Z.; Paoletta, A.L.; Monterrosa, A.M.; Schuler, J.D.; Rupert, T.J.; Hattar, K.; Glavin, N.; Haque, A. Heavy ion irradiation effects on GaN/AlGaN high electron mobility transistor failure at off-state. Microelectron. Reliab. 2019, 102, 113493. [Google Scholar] [CrossRef]
- Whiting, P.G.; Rudawski, N.G.; Holzworth, M.R.; Pearton, S.J.; Jones, K.S.; Liu, L.; Kang, T.S.; Ren, F. Nanocrack formation in AlGaN/GaN high electron mobility transistors utilizing Ti/Al/Ni/Au ohmic contacts. Microelectron. Reliab. 2017, 70, 41–48. [Google Scholar] [CrossRef]
Material | Johnson’s Figure of Merit, (JFOM) | Keyes Figure of Merit, (KFOM) | Baliga’s Figure of Merit, (BFOM) | Baliga’s High Frequency Figure of Merit, (BHFFOM) | Combined Figure of Merit, (CFOM) |
---|---|---|---|---|---|
Si | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
SiC | 277.8 | 3.6 | 317.1 | 46.3 | 248.6 |
GaN | 1089.0 | 1.8 | 846.0 | 100.8 | 353.8 |
β-Ga2O3 | 2844.4 | 0.2 | 3214.1 | 142.2 | 37.0 |
Parameter | GaN | AlN | InN |
---|---|---|---|
a0(A°) | 3.197 | 3.108 | 3.580 |
c0/a0 | 1.6297 | 1.6033 | 1.6180 |
ϵ1 = (u0 − uideal) × 10−3 | 1.9 | 6.4 | 3.7 |
Matel Gate | Doping ndop and p-GaN Thickness T | VTH (V) | RON (Ω·mm) | Ref |
---|---|---|---|---|
Ti (40 nm)/Au (100 nm) | ndop = 4 × 1019 cm−3, T = 100 nm | 1.82 | 11.9 | [71] |
Ti (25 nm)/Au (120 nm) | ndop = 1 × 1018 cm−3, T = 70 nm | 3 | 13.9 | [72] |
Ni/Au | ndop = 3.5 × 1018 cm−3, T = 50 nm | 1.5 | 8 | [73] |
Ti (50 nm)/Au (150 nm) | N/A, T = 70 nm | 1.2 | N/A | [74] |
Ni (20 nm)/Au (200 nm) | ndop = 5 × 1019 cm−3, T = 100 nm | 1.5 | N/A | [75] |
Ni (25 nm)/Au (200 nm) | ndop = 1 × 1018 cm−3, T = 60 nm | 1.7–2.1 | 5.65 & 5.05 | [76] |
Ni/Au | ndop = 3 × 1019 cm−3, T = 85 nm | 1.5 | 29.5 | [77] |
Ni (25 nm)/Au (120 nm) | N/A, T = 100 nm | 1.5 | 20 | [78] |
Ni/Au | ndop = 4 × 1019 cm−3, T = 70 nm | 1.02 | 15.4 | [79] |
Ni (15 nm)/Au (280 nm) | ndop = 4 × 1019 cm−3, T = 70 nm | 2.2 | 43.6 | [80] |
Ti/Au | ndop = 4 × 1019 cm−3, T = 85 nm | 2.1 | 21 | [81] |
TiN | ndop = 3 × 1019 cm−3, T = 80 nm | 1.6 | 17.8 | [82] |
W | ndop = 1 × 1019 cm−3, T = 75 nm | 2.1 | 49 | [83] |
TiN | N/A, T = 60 nm | 2.1 | 15 | [62] |
Pd | ndop = 3 × 1019 cm −3, T = 100 nm | 1.7 | 8.5 | [84] |
Mo (100 nm)/Ni (20 nm) | ndop = 3 × 1019 cm −3, T = 80 nm | 1.08 | 10.7 | [85] |
W | ndop = 1 × 1019 cm −3, T = 75 nm | 1.6 | 26.5 | [86] |
Ti (25 nm)/Au (120 nm) | N/A, T = 75 nm | 3.2 & 1.8 | 16 | [87] |
Ti (45 nm)/Au (200 nm) | ndop = 2 × 1018 cm−3 & 2 × 1019 cm−3, T = 50 nm | 1.30 & 1.45 | 9.66 & 9.51 | [88] |
Ti/Au/Ni | ndop = 4 × 1017 cm−3, T = 50 nm | 1.5 | N/A | [89] |
Gate Insulator | Insulator Processing | µFE (cm2·V−1·S−1) | VTH(V) | RON (Ω·mm) | On/off Ratio | Gm (mS/mm) | Ref |
---|---|---|---|---|---|---|---|
SiN(30 nm)/ SiO2 (3 nm) | SiO2ALD + post annealing at 890 in N2 + SiN LPCVD at 665 | 116 | 2.4 | 15.9 Ω·mm at VGS = 12 V | 6 × 108 | 52 | [112] |
SiN(100 nm and 300 nm)/ZrO2(23 nm) | SiN PECVD + ZrO2 ALD at 200 | 850 | 2.19 | 9.2 Ω·mm at VGS = 8 V | ~109 | 135 | [113] |
SiO2 (50 nm) | PECVD + post annealing at 850 °C in N2 | 110 | 0.7 | N/A | N/A | N/A | [95] |
Al2O3 (25 nm) | ALD + TMA and ozone | N/A | 5 | 12.9 Ω·mm at VGS = 19.7 V | N/A | 44 | [114] |
HfO2 (13 nm) | ALD+ ozone | 1482 | 3.1 | 6.0 Ω·mm at VGS = 8 V | 105 | N/A | [115] |
Al2O3 (15 nm) | ALD+ ozone | 1991 | 2.6 | 5.5 Ω·mm at VGS = 8 V | 105 | N/A | [115] |
SiN (2 nm)/ SiN (15 nm) | LT- PECVD at 850 °C + HT-LPCVD at 780 °C | 160 | 2.37 | 13.2 Ω·mm at VGS = 15 V | N/A | 17 | [116] |
SiN (15 nm) | HT-LPCVD at 780 °C | 38 | 1.28 | 20 Ω·mm at VGS = 15 V | N/A | 2 | [116] |
TiO2(3.4 nm) | Thermal oxidation | 1270 | 4.2 | N/A | 2.3 × 108 | N/A | [110] |
Al2O3 (25 nm) | ALD + post annealing at 830 in N2 | 2033 | 2.5 | 6.8 Ω·mm at VGS = 12 V | 108 | 92 | [117] |
SiN (20 nm) | LPCVD on photo-electrochemical recess | 49 | 0.8 | 26 Ω·mm at VGS = 15 V | N/A | 2 | [118] |
SiN (15 nm) | SiN LPCVD at 780 °C | 141 | 1.3 | 12 Ω·mm at VGS = 15 V | N/A | 13 | [118] |
SiN (30 nm)/ AIN (5 nm) | AIN PEALD + SiN LPCVD | 198.80 | 6.28 | 11.62 Ω·mm at VGS = 15 V | 108 | 85.75 | [119] |
HfO2 (20 nm) | ALD + post annealing at 600 in N2 | N/A | 2.5 | 3.8 Ω·mm at VGS = 6.5 V | 2.1×109 | 81.38 | [120] |
Al2O3 (30 nm) | ALD + post annealing at 850 in N2 | 1602 | 2.6 | 10.2 Ω·mm at VGS = 10 V | N/A | 58 | [121] |
AIN (7 nm)/ SiN (7 nm) | MOCVD | 180 | 1.2 | N/A | (5–−6) × 108 | 60 | [122] |
Al2O3 (4 nm) | ALD + post annealing at 900 in O2 | 1450 | 1.55 | 7.1 Ω·mm at VGS = 12 V | N/A | 54 | [123] |
SiNx (20 nm)/ SiON (10 nm) | SiON PECVD at 350 °C in SiH4, NH3, N2O, and N2 atmospheres + SiNx LPCVD at 780 °C with an ammonia flow of 280 sccm, a SiH2Cl2 flow of 70 sccm. | 1793 | 0.81 | 31.2 Ω·mm at VGS = 12 V | N/A | N/A | [124] |
Al2O3 (18 nm) | ALD + post annealing at 400 in N2 | 65 | 7.6 | 19.5 Ω·mm at VGS = 14 V | N/A | N/A | [125] |
Al2O3 (30 nm) | ALD + post annealing at 850 in N2 | 1670 | 0.53 | 24.4 Ω·mm at VGS = 10 V | ~108 | 42 | [126] |
Al2O3 (5 nm)/ SiN (7 nm) | SiN LPCVD at 780 | 122 | 1.7 | 12.9 Ω·mm at VGS = 18 V | ~108 | 53 | [127] |
NiOx(100 nm) | Sputtering | N/A | 0.45 | 9.42 Ω·mm at VGS = 4 V | 108 | ~75 | [128] |
SiO2 (20 nm) | ALD + post annealing at 780 | 1700 | 1.56 | 7.4 Ω·mm at VGS = 6 V | 1010 | 190 | [129] |
Al2O3 (20 nm) | ALD + post annealing at 900 in N2 | 245 | 5 | N/A at VGS = 12 V | 1010 | 19 | [130] |
Si3N4 (10 nm)/TiO2 (20 nm) | SiN PECVD + TiO2 ALD | 1200 | 1.81 | 43.81 Ω·mm at VGS = 10 V | N/A | 112 | [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, N.; Mohamed, M.F.P.; Khan, M.F.A.J.; Falina, S.; Kawarada, H.; Syamsul, M. Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review. Crystals 2022, 12, 1581. https://doi.org/10.3390/cryst12111581
Islam N, Mohamed MFP, Khan MFAJ, Falina S, Kawarada H, Syamsul M. Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review. Crystals. 2022; 12(11):1581. https://doi.org/10.3390/cryst12111581
Chicago/Turabian StyleIslam, Naeemul, Mohamed Fauzi Packeer Mohamed, Muhammad Firdaus Akbar Jalaludin Khan, Shaili Falina, Hiroshi Kawarada, and Mohd Syamsul. 2022. "Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review" Crystals 12, no. 11: 1581. https://doi.org/10.3390/cryst12111581
APA StyleIslam, N., Mohamed, M. F. P., Khan, M. F. A. J., Falina, S., Kawarada, H., & Syamsul, M. (2022). Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review. Crystals, 12(11), 1581. https://doi.org/10.3390/cryst12111581