Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4′-Hydroxybiphenyl-4-carboxylate Derivatives
Abstract
:1. Introduction
2. Synthesis of the Racemic Mixtures
3. Measurements
4. Mesomorphic Properties of the Racemic Mixtures
5. Mixtures Compositions and Their Properties
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautier, R.; Klingsporn, J.M.; Van Duyne, R.P.; Poeppelmeier, K.R. Optical activity from racemates. Nat. Mater. 2016, 15, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Karnik, A.; Hasan, M. Stereochemistry. A Three-Dimensional Insight, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Urbańska, M.; Dziaduszek, J.; Strzeżysz, O.; Szala, M. Synclinic and anticlinic properties of (R,S) 4′-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy)heptyl-1-oxy]benzoates. Phase Transit. 2019, 92, 657–666. [Google Scholar] [CrossRef]
- Morawiak, P.; Żurowska, M.; Piecek, W. A long-pitch orthoconic antiferroelectric mixture modified by isomeric and racemic homostructural dopants. Liq. Cryst. 2018, 45, 1451–1459. [Google Scholar] [CrossRef]
- Ogrodnik, K.; Perkowski, P.; Raszewski, Z.; Piecek, W.; Żurowska, M.; Dabrowski, R.; Jaroszewicz, L. Dielectric measurements of orthoconic antiferroelectric liquid crystal mixtures. Mol. Cryst. Liq. Cryst. 2011, 547, 54–64. [Google Scholar] [CrossRef]
- Urbańska, M.; Morawiak, P.; Czerwiński, M. Effect of doping by enantiomers with the different absolute configuration and phase sequence on mesomorphic, helical and electro-optical properties of highly tilted chiral anticlinic mixture. J. Mol. Liq. 2020, 309, 113141. [Google Scholar] [CrossRef]
- Czerwiński, M.; Tykarska, M.; Kula, P. New ferroelectric liquid crystalline materials with properties suitable for surface stabilized and deformed helix effects. Liq. Cryst. Appl. 2021, 21, 61–73. [Google Scholar] [CrossRef]
- Nepal, S.; Das, B.; Das, M.K.; Das Sarkar, M.; Urbańska, M.; Czerwiński, M. Static permittivity and electro-optical properties of bi-component orthoconic antiferroelectric liquid crystalline mixtures targeted for polymer stabilized sensing systems. Polymers 2022, 14, 956. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Das, M.K.; Bubnov, A.; Weissflog, W.; Węgłowska, D.; Dabrowski, R. Induced frustrated twist grain boundary liquid crystalline phases in binary mixtures of achiral hockey stick-shaped and chiral rod-like materials. J. Mater. Chem. C 2019, 7, 10530–10543. [Google Scholar] [CrossRef]
- Tykarska, M.; Kurp, K.; Zieja, P.; Herman, J.; Stulov, S.; Bubnov, A. New quaterphenyls laterally substituted by methyl group and their influence on the self-assembling behaviour of ferroelectric bicomponent mixtures. Liq. Cryst. 2022, 49, 821–835. [Google Scholar] [CrossRef]
- Debnath, A.; Mandal, P.K. Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures. Liq. Cryst. 2017, 44, 2192–2202. [Google Scholar] [CrossRef]
- Vojtylová, T.; Kaspar, M.; Hamplová, V.; Novotná, V.; Sýkora, D. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid. Phase Transit. 2014, 87, 758–769. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Šrolerová, T.; Kubíčková, A.; Kalíková, K. Fast UHPLC enantioseparation of liquid crystalline materials with chiral center based on octanol in reversed-phase and polar organic mode. Mon. Für Chem. Chem. Mon. 2020, 151, 1235–1240. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Kalíková, K.; Kubíčková, A. Ultra-performance supercritical fluid chromatography: A powerful tool for the enantioseparation of thermotropic fluorinated liquid crystals. Anal. Chim. Acta 2018, 1038, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M.; Vaňkátová, P.; Kubíčková, A.; Kalíková, K. Synthesis, characterisation and supercritical fluid chromatography enantioseparation of new liquid crystalline materials. Liq. Cryst. 2020, 47, 1832–1843. [Google Scholar] [CrossRef]
- Vojtylová-Jurkovičová, T.; Vaňkátová, P.; Urbańska, M.; Hamplová, V.; Sýkora, D.; Bubnov, A. Effective control of optical purity by chiral HPLC separation for ester-based liquid crystalline materials forming anticlinic smectic phases. Liq. Cryst. 2020, 48, 43–53. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Kubíčková, A.; Cigl, M.; Kalíková, K. Ultra-performance chromatographic methods for enantioseparation of liquid crystals based on lactic acid. J. Supercrit. Fluids 2019, 146, 217–225. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Kubíčková, A.; Kalíková, K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J. Chromatogr. A 2022, 1673, 463074. [Google Scholar] [CrossRef]
- Vojtylová, T.; Hamplová, V.; Galewski, Z.; Korbecka, I.; Sýkora, D. Chiral separation of novel diazenes on a polysaccharide-based stationary phase in the reversed-phase mode. J. Sep. Sci. 2017, 40, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M.; Morawiak, P.; Senderek, M. Investigation of the tilt angle and spontaneous polarisation of antiferroelectric liquid crystals with a chiral centre based on (S)-(+)-3-octanol. J. Mol. Liq. 2021, 328, 115378. [Google Scholar] [CrossRef]
- Urbańska, M.; Perkowski, P.; Morawiak, P.; Senderek, M. Antiferroelectric and ferroelectric mesophases created by (S) enantiomers with a short oligomethylene spacer and their usefulness in the formulation of orthoconic mixtures. J. Mol. Liq. 2020, 320, 114452. [Google Scholar] [CrossRef]
- Sage, I. Thermochromic liquid crystals. Liq. Cryst. 2011, 38, 1551–1561. [Google Scholar] [CrossRef]
- Chełstowska, A.; Czerwiński, M.; Tykarska, M.; Bennis, N. The influence of antiferroelectric compounds on helical pitch of orthoconic W-1000 mixture. Liq. Cryst. 2014, 41, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Czerwiński, M.; Tykarska, M.; Dabrowski, R.; Chełstowska, A.; Żurowska, M.U.; Kowerdziej, R.; Jaroszewicz, L.R. The influence of structure and concentration of cyano-terminated and terphenyl dopants on helical pitch and helical twist sense in orthoconic antiferroelectric mixtures. Liq. Cryst. 2012, 39, 1498–1502. [Google Scholar] [CrossRef]
- Czerwinski, M.; Tykarska, M. Helix parameters in bi- and multicomponent mixtures composed of orthoconic antiferroelectric liquid crystals with three ring molecular core. Liq. Cryst. 2014, 41, 850–860. [Google Scholar] [CrossRef]
- Żurowska, M.; Dąbrowski, R.; Dziaduszek, J.; Garbat, K.; Filipowicz, M.; Tykarska, M.; Rejmer, W.; Czupryński, K.; Spadło, A.; Bennis, N.; et al. Influence of alkoxy spacer length and fluorosubstitution of benzene ring on mesogenic and spectral properties of high tilted antiferroelectric 4’-(S)-1-(methylheptyloxycarbonyl)biphenyl-4-yl-4-(2,2,3,3,4,4,4-heptafluorobutoxy)alkoxybenzoates. J. Mater. Chem. 2010, 21, 2144–2153. [Google Scholar] [CrossRef]
- Drzewiński, W.; Dąbrowski, R.; Czupryński, K. Orthoconic antiferroelectrics. Synthesis and mesomorphic properties of optically active (S)-(+)-4-(1-methylheptyloxycarbonyl)phenyl 4’-(fluoroalkanoyloxyalkoxy)biphenyl-4-carboxylates and 4’-(alkanoyloxyalkoxy)biphenyl-4-carboxylates. Pol. J. Chem. 2002, 76, 273–284. [Google Scholar] [CrossRef]
- Belyakov, V.A.; Vladimir, E.D.; Orlov, V.P. Optics of cholesteric liquid crystals. Sov. Phys. Uspekhi 1979, 22, 64–88. [Google Scholar] [CrossRef]
- Tykarska, M.; Czerwiński, M.; Miszkurka, J. Influence of temperature and terminal chain length on helical pitch in homologue seriesnH6Bi. Liq. Cryst. 2010, 37, 487–495. [Google Scholar] [CrossRef]
- Tykarska, M.; Czerwiński, M. The inversion phenomenon of the helical twist sense in antiferroelectric liquid crystal phase from electronic and vibrational circular dichroism. Liq. Cryst. 2016, 43, 462–472. [Google Scholar] [CrossRef]
- Raszewski, Z.; Kędzierski, J.; Perkowski, P.; Piecek, W.; Rutkowska, J.; Kłosowicz, S.; Zieliński, J. Refractive indices of the MHPB(H)PBC and MHPB(F)PBC antiferroelectric liquid crystals. Ferroelectrics 2002, 276, 289–300. [Google Scholar] [CrossRef]
- Kowiorski, K.; Kędzierski, J.; Raszewski, Z.; Kojdecki, M.A.; Chojnowska, O.; Garbat, K.; Miszczyk, E.; Piecek, W. Complementary interference method for determining optical parameters of liquid crystals. Phase Transit. 2016, 89, 403–410. [Google Scholar] [CrossRef]
- Milewska, K.; Drzewiński, W.; Czerwiński, M.; Dąbrowski, R.; Piecek, W. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mater. Chem. Phys. 2016, 171, 33–38. [Google Scholar] [CrossRef]
- Czerwiński, M.; Urbańska, M.; Bennis, N.; Rudquist, P. Influence of the type of phase sequence and polymer-stabilization on the physicochemical and electro-optical properties of novel high-tilt antiferroelectric liquid crystalline materials. J. Mol. Liq. 2019, 288, 111057. [Google Scholar] [CrossRef]
- Czerwiński, M.; de Blas, M.G.; Bennis, N.; Herman, J.; Dmochowska, E.; Otón, J.M. Polymer stabilized highly tilted antifer-roelectric liquid crystals—The influence of monomer structure and phase sequence of base mixtures. J. Mol. Liq. 2020, 327, 114869. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends Anal. Chem. 2019, 122, 115709. [Google Scholar] [CrossRef]
- Chen, X.; Yamamoto, C.; Okamoto, Y. Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure Appl. Chem. 2007, 79, 1561–1573. [Google Scholar] [CrossRef] [Green Version]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef] [PubMed]
- Scriba, G.K.E. Chiral recognition in separation science—An update. J. Chromatogr. A 2016, 1467, 56–78. [Google Scholar] [CrossRef]
- Ward, T.J.; Ward, K.D. Chiral separations: A review of current topics and trends. Anal. Chem. 2011, 84, 626–635. [Google Scholar] [CrossRef]
The Acronym of the Racemic Mixture | Purity [%] |
---|---|
2.(HH) (R,S) | 99.0 |
2.(HF) (R,S) | 99.0 |
2.(FH) (R,S) | 99.7 |
3.(HF) (R,S) | 99.5 |
3.(FF) (R,S) | 99.5 |
4.(HH) (R,S) | 99.9 |
4.(HF) (R,S) | 99.0 |
5.(HH) (R,S) | 99.8 |
5.(FH) (R,S) | 99.8 |
5.(FF) (R,S) | 99.8 |
6.(FH) (R,S) | 99.3 |
6.(FF) (R,S) | 99.7 |
7.(HH) (R,S) | 99.2 |
Acronym | Cr | SmCA | SmC | SmA | Iso | ||||
---|---|---|---|---|---|---|---|---|---|
74.3 | 138.6 | ||||||||
2.(HH) (R,S) | * | 4.9 | * | 140.3 | - | - | * | ||
34.9 | 9.9 | ||||||||
54.5 | 119.8 | ||||||||
2.(HF) (R,S) | * | - | * | 118.7 | - | - | * | ||
30.1 | 9.1 | ||||||||
76.3 | 127.7 | 130.6 | |||||||
2.(FH) (R,S) | * | - | * | 126.8 | * | 129.6 | - | * | |
35.5 | 2.0 | 6.4 | |||||||
48.9 | 104.8 | ||||||||
3.(HF) (R,S) | * | - | * | 103.3 | - | - | * | ||
22.2 | 8.2 | ||||||||
56.8 | 111.2 | 113.9 | 115.1 | ||||||
3.(FF) (R,S) | * | 30.3 | * | 104.7 | * | 113.0 | * | 114.2 | * |
23.9 | 0.07 | 1.15 | 5.5 | ||||||
52.3; 56.7 | 144.4 | 148.4 | |||||||
4.(HH) (R,S) | * | - | * | 143.7 | - | * | 147.4 | * | |
4.5; 20.2 | 1.7 | 6.8 | |||||||
49.6; 60.2 | 122.5 | ||||||||
4.(HF) (R,S) | * | - | * | 122.6 | - | - | * | ||
25.9; 3.2 | 6.2 | ||||||||
60.4 | 136.5 | 143.1 | |||||||
5.(HH) (R,S) | * | - | * | 135.9 | - | * | 142.2 | * | |
35.6 | 1.1 | 6.9 | |||||||
69.8 | 108.1 | 119.6 | 129.2 | ||||||
5.(FH) (R,S) | * | - | * | 95.6 | * | 118.8 | * | 127.8 | * |
33.6 | 0.04 | 1.1 | 6.3 | ||||||
72.6 | 110.9 | 119.8 | 126.9 | ||||||
5.(FF) (R,S) | * | 14.3 | * | 101.6 | * | 118.9 | * | 125.7 | * |
25.2 | 0.03 | 0.9 | 5.6 | ||||||
59.8 | 120.8 | 131.5 | |||||||
6.(FH) (R,S) | * | - | * | 120.3 | - | * | 130.5 | * | |
25.9 | 0.75 | 6.5 | |||||||
68.4 | 121.3 | 129.1 | |||||||
6.(FF) (R,S) | * | 40.4 | * | 120.4 | - | * | 127.6 | * | |
26.9 | 0.76 | 5.9 | |||||||
36.0 | 114.3 | 131.2 | 140.1 | ||||||
7.(HH) (R,S) | * | - | * | 105.5 | * | 130.3 | * | 139.5 | * |
13.25 | 0.03 | 0.8 | 6.8 |
Acronyms of the Doped Mixtures | Base Mixtures | Acronyms of the Dopants |
---|---|---|
W-458A | W-458 | 2.(FH) (R,S) |
W-458B | W-458 | 3.(HF) (R,S) |
W-459A | W-459 | 5.(FF) (R,S) |
W-459B | W-459 | 7.(HH) (R,S) |
W-460A | W-460 | 4.(HF) (R,S) |
W-460B | W-460 | 6.(FH) (R,S) |
Mixtures | Cr | SmCA* | SmC* | SmA* | Iso | ||||
---|---|---|---|---|---|---|---|---|---|
70.9–73.6 | 95.0–95.6 | 100.5–101.7 | |||||||
48.2–49.6 | 94.5–94.9 | 99.8–101.3 | |||||||
W-458A | * | - | * | 71.0 | * | 93.8 | * | 99.4 | * |
58.5 | 94.1 | 99.9 | |||||||
0.08 | 1.98 | 4.3 | |||||||
74.8–76.0 | 92.8–93.2 | 97.0–97.7 | |||||||
57.2–57.8 | 92.5–92.8 | 96.4–97.1 | |||||||
W-458B | * | - | * | 75.0 | * | 91.8 | * | 96.2 | * |
63.8 | 92.0 | 96.3 | |||||||
0.15 | 2.15 | 4.4 | |||||||
70.5–71.7 | 85.9–90.4 | ||||||||
55.4–56.3 | 84.5–87.6 | ||||||||
W-459A | * | - | * | 72.2 | * | 85.1 | - | * | |
60.5 | 86.5 | ||||||||
0.08 | 7.5 | ||||||||
72.5–73.6 | 86.4–92.4 | ||||||||
61.7–62.5 | 84.8–89.8 | ||||||||
W-459B | * | - | * | 73.1 | * | 84.9 | - | * | |
64.9 | 88.2 | ||||||||
0.75 | 6.1 | ||||||||
78.5–79.2 | 86.3–91.5 | ||||||||
71.2–72.0 | 83.8–88.4 | ||||||||
W-460A | * | - | * | 78.0 | * | 84.2 | - | * | |
72.0 | 87.2 | ||||||||
0.17 | 6.4 | ||||||||
72.0–73.1 | 84.0–84.7 | 88.7–93.2 | |||||||
63.1–61.9 | 83.2–84.0 | 87.3–90.6 | |||||||
W-460B | * | - | * | 71.3 | * | 82.3 | * | 87.2 | * |
63.8 | 83.4 | 89.6 | |||||||
0.07 | 1.63 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, M.; Szala, M. Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4′-Hydroxybiphenyl-4-carboxylate Derivatives. Crystals 2022, 12, 1710. https://doi.org/10.3390/cryst12121710
Urbańska M, Szala M. Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4′-Hydroxybiphenyl-4-carboxylate Derivatives. Crystals. 2022; 12(12):1710. https://doi.org/10.3390/cryst12121710
Chicago/Turabian StyleUrbańska, Magdalena, and Mateusz Szala. 2022. "Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4′-Hydroxybiphenyl-4-carboxylate Derivatives" Crystals 12, no. 12: 1710. https://doi.org/10.3390/cryst12121710
APA StyleUrbańska, M., & Szala, M. (2022). Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4′-Hydroxybiphenyl-4-carboxylate Derivatives. Crystals, 12(12), 1710. https://doi.org/10.3390/cryst12121710