Morphological Control of Layered Double Hydroxides Prepared by Co-Precipitation Method
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.1.1. Exfoliation-Able CoAl-LDH-CO32− Synthesized with Homogeneous Co-Precipitation and Ion Exchange Method
2.1.2. Exfoliation-Able LDH-NO3− Synthesized with One-Step Homogeneous Co-Precipitation
2.1.3. LDH-NO3− Nanosheets Synthesized with One-Step High Saturation Coprecipitation
2.2. Characterizations
3. Results and Discussion
3.1. Exfoliation-Able Micron-Sized CoAl-LDH-CO32− Synthesized with Ion Exchange Method
3.2. Exfoliation-Able Micron-Sized CoAl-LDH-NO3− Synthesized with One-Step Homogeneous Co-Precipitation Method
3.3. Exfoliated Nanoscale-Sized CoAl-LDH-NO3− Synthesized with High Saturation Coprecipitation Method
3.4. Effect of M2+ Al-LDH Synthesized by High Saturation and Homogeneous Co-Precipitation on Crystal Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhang, R.; Peng, Y.; Gao, X.; Li, Z.; Fan, B.; Guan, C.Y.; Beiyuan, J.; Zhou, Y.; Liu, J.; et al. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. J. Hazard. Mater. 2021, 416, 126258. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Chen, G.M. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014, 26, 5950–5956. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides. In Layered Double Hydroxides; Structure and Bonding; Springer: Berlin, Heidelberg, 2006; pp. 89–119. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, X.; Bian, Y.; Hu, T.; Weng, X.; Liang, R.; Wei, M. Magnesium-based layered double hydroxide nanosheets: A new bone repair material with unprecedented osteogenic differentiation performance. Nanoscale 2020, 12, 19075–19082. [Google Scholar] [CrossRef]
- Yu, J.F.; Wang, Q.; O’Hare, D.; Sun, L.Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef]
- Nosrati, H.; Seidi, F.; Hosseinmirzaei, A.; Mousazadeh, N.; Mohammadi, A.; Ghaffarlou, M.; Danafar, H.; Conde, J.; Sharafi, A. Prodrug Polymeric Nanoconjugates Encapsulating Gold Nanoparticles for Enhanced X-ray Radiation Therapy in Breast Cancer. Adv. Healthc. Mater. 2022, 11, e2102321. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Yang, X.; Guo, S.; Waterhouse, G.I.N.; Song, G.; Guan, S.; Liu, A.; Cheng, L.; Zhou, S. Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact. Mater. 2023, 20, 126–136. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Nazarzadeh Zare, E.; Rossi, F.; Rabiee, N.; Sharifi, E.; Makvandi, P. Photoactive polymers-decorated Cu-Al layered double hydroxide hexagonal architectures: A potential non-viral vector for photothermal therapy and co-delivery of DOX/pCRISPR. Chem. Eng. J. 2022, 448, 137747. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Chi, Y.; Wang, D.; Takuya, N.; Xu, W.; Ye, J.; Liu, X.; et al. Ferrous ions doped layered double hydroxide: Smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomater. Sci. 2021, 9, 5928–5938. [Google Scholar] [CrossRef]
- Santos, R.M.M.; Tronto, J.; Briois, V.; Santilli, C.V. Thermal decomposition and recovery properties of ZnAl-CO3 layered double hydroxide for anionic dye adsorption: Insight into the aggregative nucleation and growth mechanism of the LDH memory effect. J. Mater. Chem. A 2017, 5, 9998–10009. [Google Scholar] [CrossRef]
- Bascialla, G.; Regazzoni, A.E. Immobilization of anionic dyes by intercalation into hydrotalcite. Colloids Surf. A Physicochem. Eng. Asp. 2008, 328, 34–39. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Liang, Z.; Wan, Y.; Feng, Z.; Liu, J.; Zhang, Q.; Wang, M. Replacement of interlayer anion via memory effect of layered double hydroxide: A promising strategy for fabricating nanostructures with better flame-retardant performance. J. Phys. Chem. Solids 2022, 170, 110932. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880. [Google Scholar] [CrossRef]
- Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, N.Y.; Caro, J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. J. Mater. Chem. A 2014, 2, 5716–5723. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Shen, Z.F.; Liu, L.H.; Liu, S.M. Preparation and functionality of clay-containing films. J. Mater. Chem. 2011, 21, 15132–15153. [Google Scholar] [CrossRef]
- Xin, Y.; Dai, X.; Lv, G.; Wei, X.; Li, S.; Li, Z.; Xue, T.; Shi, M.; Zou, K.; Chen, Y.; et al. Stability-Enhanced α-Ni(OH)2 Pillared by Metaborate Anions for Pseudocapacitors. ACS Appl. Mater. Interfaces 2021, 13, 28118–28128. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhu, P.L.; Zhang, L.C.; Zhou, F.R.; Li, T.X.; Bai, R.Q.; Sun, R.; Wong, C.P. Electrodeposition of Co(OH)2 Improving Carbonized Melamine Foam Performance for Compressible Supercapacitor Application. ACS Sustain. Chem. Eng. 2019, 7, 16803–16813. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Y.; Zhang, Q.; Li, Y.; Deng, F.; Gao, R.; Wang, J. A novel interlaced NiCoFe hydrotalcite assembled by nanorods and nanosheets with enhanced electrochemical performance for supercapacitor. J. Alloys Compd. 2022, 925, 166668. [Google Scholar] [CrossRef]
- Usui, H.; Sasaki, T.; Koshizaki, N. Formation Process of Platelet Nanocomposites with Zinc Hydroxide and Sodium Dodecyl Sulfate Prepared by Laser Ablation in Solution. Chem. Lett. 2006, 35, 752–753. [Google Scholar] [CrossRef]
- Usui, H.; Sasaki, T.; Koshizaki, N. Effect of Alkyl Chain Length on Layered Structure of Zn Nanocomposites Prepared by Laser Ablation of Zn in Aqueous Solution of Sodium Alkyl Sulfate. Chem. Lett. 2005, 34, 700–701. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Crystal structures of some double hydroxide minerals. Mineral. Mag. 1973, 39, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Iyi, N.; Matsumoto, T.; Kaneko, Y.; Kitamura, K. Deintercalation of carbonate ions from a hydrotalcite-like compound: Enhanced decarbonation using acid-salt mixed solution. Chem. Mater. 2004, 16, 2926–2932. [Google Scholar] [CrossRef]
- Li, L.; Ma, R.Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17, 4386–4391. [Google Scholar] [CrossRef]
- Hibino, T.; Jones, W. New approach to the delamination of layered double hydroxides. J. Mater. Chem. 2001, 11, 1321–1323. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Kayano, M.; Ogawa, M. Preparation of large platy particles of Co-Al layered double hydroxides. Clays Clay Miner. 2006, 54, 382–389. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural Aspects of Layered Double Hydroxides; Springer: Berlin/Heidelberg, Germany, 2005; Volume 119, pp. 1–87. [Google Scholar] [CrossRef]
- Rozov, K.B.; Berner, U.; Kulik, D.A.; Diamond, L.W. Solubility and thermodynamic properties of carbonate-bearing hydrotalcite–pyroaurite solid solutions with a 3:1 Mg/(Al+Fe) mole ratio. Clays Clay Miner. 2011, 59, 215–232. [Google Scholar] [CrossRef]
- Bravo-Suarez, J.J.; Paez-Mozo, E.A.; Oyama, S.T. Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quim. Nova 2004, 27, 601–614. [Google Scholar] [CrossRef]
- Kostadinova, D.; Cenacchi Pereira, A.; Lansalot, M.; D’Agosto, F.; Bourgeat-Lami, E.; Leroux, F.; Taviot-Gueho, C.; Cadars, S.; Prevot, V. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides. Beilstein J. Nanotechnol. 2016, 7, 2000–2012. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Martin, B.R.; Clearfield, A.; Luo, Z.; Sun, L. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451. [Google Scholar] [CrossRef]
- Hibino, T. Delamination of layered double hydroxides containing amino acids. Chem. Mater. 2004, 16, 5482–5488. [Google Scholar] [CrossRef]
- Essex, J.W.; Jorgensen, W.L. Dielectric constants of formamide and dimethylformamide via computer simulation. J. Phys. Chem. 1995, 99, 17956–17962. [Google Scholar] [CrossRef]
- Bookin, A.S. Polytype Diversity of the Hydrotalcite-Like Minerals I. Possible Polytypes and their Diffraction Features. Clays Clay Miner. 1993, 41, 551–557. [Google Scholar] [CrossRef]
- Newman, S.P.; Jones, W.; O’Connor, P.; Stamires, D.N. Synthesis of the 3R2 polytype of a hydrotalcite-like mineral. J. Mater. Chem. 2002, 12, 153–155. [Google Scholar] [CrossRef]
- Prinetto, F.; Ghiotti, G.; Graffin, P.; Tichit, D. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous Mesoporous Mater. 2000, 39, 229–247. [Google Scholar] [CrossRef]
- Ai, Z.Q.; Liu, C.Q.; Zhang, Q.W.; Qu, J.; Li, Z.; He, X.M. Adding ZnO and SiO2 to scatter the agglomeration of mechanochemically prepared Zn-Al LDH precursor and promote its adsorption toward methyl orange. J. Alloys Compd. 2018, 763, 342–348. [Google Scholar] [CrossRef]
- He, Y.; Wang, R.; Jiao, T.; Yan, X.; Wang, M.; Zhang, L.; Bai, Z.; Zhang, Q.; Peng, Q. Facile Preparation of Self-Assembled Layered Double Hydroxide-Based Composite Dye Films as New Chemical Gas Sensors. ACS Sustain. Chem. Eng. 2019, 7, 10888–10899. [Google Scholar] [CrossRef]
- Yang, N.; Ma, J.; Shi, J.; Gao, D. pH-triggered MgAlZr layered double hydroxides for modification of collagen fibers with enhanced thermal stability and UV resistance. Appl. Clay Sci. 2020, 198, 105827. [Google Scholar] [CrossRef]
Samples | 1 | 2 | 3 | 6 | 7 |
---|---|---|---|---|---|
4 | |||||
5 | |||||
3:1:5 | |||||
Co:Al:urea (mmol) | 2:1:10 | 2.5:1:10 | 3:1:10 | 3.5:1:10 | 4:1:10 |
3:1:15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Yan, X.; Zhou, Y.; Xu, W.; Gan, Y.; Zhang, Y.; Zhang, N. Morphological Control of Layered Double Hydroxides Prepared by Co-Precipitation Method. Crystals 2022, 12, 1713. https://doi.org/10.3390/cryst12121713
Wei C, Yan X, Zhou Y, Xu W, Gan Y, Zhang Y, Zhang N. Morphological Control of Layered Double Hydroxides Prepared by Co-Precipitation Method. Crystals. 2022; 12(12):1713. https://doi.org/10.3390/cryst12121713
Chicago/Turabian StyleWei, Changxin, Xiaoyun Yan, Yi Zhou, Wenke Xu, Yiqi Gan, Yihe Zhang, and Na Zhang. 2022. "Morphological Control of Layered Double Hydroxides Prepared by Co-Precipitation Method" Crystals 12, no. 12: 1713. https://doi.org/10.3390/cryst12121713