Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation
Abstract
:1. Introduction
2. Thermoelectric Devices
2.1. Geometrical Matching
2.2. Compatibility Factor Matching
3. Thermoelectric Applications
3.1. In Commercial Airplanes
3.2. In Spacecraft
4. Materials Selection
4.1. Silicon
4.2. Recycled Silicon
4.3. Silicon Germanium
4.4. Other Silicon-Based Compounds
5. Consideration for High-Temperature Devices
5.1. Device Design
5.2. Environmental and Situational Considerations
6. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Change Data Lab. Available online: https://ourworldindata.org/explorers/energy?tab=table&time=2009..latest&country=USA~GBR~CHN~OWID_WRL~IND~BRA~ZAF&Total+or+Breakdown=Total&Energy+or+Electricity=Primary+energy&Metric=Annual+consumption (accessed on 1 December 2021).
- Benghanem, M.; Al-Mashraqi, A.A.; Daffallah, K.O. Performance of solar cells using thermoelectric module in hot sites. Renew. Energy 2016, 89, 51–59. [Google Scholar] [CrossRef]
- Mazareanu, E. Total Fuel Consumption of Commercial Airlines Worldwide between 2005 and 2021. Available online: https://www.statista.com/statistics/655057/fuel-consumption-of-airlines-worldwide/ (accessed on 6 January 2022).
- Wang, B.; Zheng, S.; Chen, Y.; Wang, Q.; Li, Z.; Wu, Y.; Li, J.; Mu, Y.; Xu, S.; Liang, J. Realizing ultralow thermal conductivity in Cu3SbSe4 via all-scale phonon scattering by co-constructing multiscale heterostructure and IIIB element doping. Mater. Today Energy 2021, 19, 100620. [Google Scholar] [CrossRef]
- Wu, M.; Yao, K.; Li, D.; Huang, X.; Liu, Y.; Wang, L.; Song, E.; Yu, J.; Yu, X. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater. Today Energy 2021, 21, 100786. [Google Scholar] [CrossRef]
- Xin, C.; Hu, Z.; Fang, Z.; Chaudhary, M.; Xiang, H.; Xu, X.; Aigouy, L.; Chen, Z. Flexible and wearable plasmonic-enabled organic/inorganic hybrid photothermoelectric generators. Mater. Today Energy 2021, 22, 100859. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Wang, T.; Yang, D.; Jabar, B.; Abbas, A.; Li, F.; Chen, Y.-X.; Zha, X.-H.; Liang, G.-X.; Fan, P. Nanostructural manipulations for achieving record-high room temperature figure of merit in the ZnSb thin films. Mater. Today Energy 2021, 22, 100870. [Google Scholar] [CrossRef]
- Suwardi, A.; Wang, F.; Xue, K.; Han, M.; Teo, P.; Wang, P.; Wang, S.; Liu, Y.; Ye, E.; Li, Z.; et al. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2021, 34, 2102703. [Google Scholar] [CrossRef]
- Zhang, D.; Duran, S.S.F.; Lim, W.Y.S.; Tan, C.K.I.; Cheong, W.C.D.; Suwardi, A.; Loh, X.J. SARS-CoV-2 in wastewater: From detection to evaluation. Mater. Today Adv. 2022, 13, 100211. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Su, X.; Shu, S.; Luo, Y.; Tan, X.Y.; Sun, J.; Sun, D.; Zhang, H.; Zhang, Q.; Suwardi, A.; et al. Cold-Sintered Bi2Te3-Based Materials for Engineering Nanograined Thermoelectrics. ACS Appl. Energy Mater. 2022. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, C.; Zhang, M. Recent progress in flexible tactile sensor systems: From design to application. Soft Sci. 2021, 1, 3. [Google Scholar] [CrossRef]
- Lim, W.Y.S.; Zhang, D.; Duran, S.S.F.; Tan, X.Y.; Tan, C.K.I.; Xu, J.; Suwardi, A. Physical Intuition to Improve Electronic Properties of Thermoelectrics. Front. Phys. 2021, 9, 683. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, M.; Wu, J.; Guan, X.; Suwardi, A.; Li, Y.; Lal, M.; Xie, G.; Zhang, G.; Zhang, L.; et al. Modification of thermal transport in few-layer MoS 2 by atomic-level defect engineering. Nanoscale 2021, 13, 11561–11567. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Cao, J.; Tan, X.Y.; Zheng, J.; Chien, S.W.; Yang, L.; Chen, K.; Ng, H.K.; Duran, S.S.F.; Liu, H.; et al. Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. J. Mater. Chem. A 2021, 9, 23335–23344. [Google Scholar] [CrossRef]
- Png, Z.M.; Soo, X.Y.D.; Chua, M.H.; Ong, P.J.; Suwardi, A.; Tan, C.K.I.; Xu, J.; Zhu, Q. Strategies to reduce the flammability of organic phase change Materials: A review. Sol. Energy 2021, 231, 115–128. [Google Scholar] [CrossRef]
- Sun, H.-L.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Yi, Y.-G. High thermoelectric efficiency fluoride perovskite materials of AgMF3 (M = Zn, Cd). Mater. Today Energy 2021, 19, 100611. [Google Scholar] [CrossRef]
- Ivanov, Y.; Levin, A.A.; Novikov, S.; Pshenay-Severin, D.; Volkov, M.; Zyuzin, A.; Burkov, A.; Nakama, T.; Schnatmann, L.; Reith, H.; et al. Low-temperature thermal conductivity of thermoelectric Co1− xMxSi (M= Fe, Ni) alloys. Mater. Today Energy 2021, 20, 100666. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.-M.; Park, C.; Shin, W.; Kim, S.; Kim, H.-S. Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Mater. Today Energy 2021, 21, 100795. [Google Scholar] [CrossRef]
- Li, J.M.; Ming, H.W.; Song, C.J.; Wang, L.; Xin, H.X.; Gu, Y.J.; Zhang, J.; Qin, X.Y.; Li, D. Synergetic modulation of power factor and thermal conductivity for Cu3SbSe4-based system. Mater. Today Energy 2020, 18, 100491. [Google Scholar] [CrossRef]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shen, J.; Lin, S.; Li, J.; Chen, Z.; Li, W.; Pei, Y. Thermoelectric properties of GeSe. J. Mater. 2016, 2, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Bourgès, C.; Srinivasan, B.; Fontaine, B.; Sauerschnig, P.; Minard, A.; Halet, J.-F.; Miyazaki, Y.; Berthebaud, D.; Mori, T. Tailoring the thermoelectric and structural properties of Cu–Sn based thiospinel compounds [CuM1+xSn1−xS4 (M = Ti, V, Cr, Co)]. J. Mater. Chem. C 2020, 8, 16368–16383. [Google Scholar] [CrossRef]
- Muchtar, A.R.; Srinivasan, B.; Le Tonquesse, S.; Singh, S.; Soelami, N.; Yuliarto, B.; Berthebaud, D.; Mori, T. Physical Insights on the Lattice Softening Driven Mid-Temperature Range Thermoelectrics of Ti/Zr-Inserted SnTe—An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes’ Equation for Estimating Carrier Properties. Adv. Energy Mater. 2021, 11, 2101122. [Google Scholar] [CrossRef]
- Srinivasan, B.; Berthebaud, D.; Mori, T. Is LiI a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study. Energies 2020, 13, 643. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, B.; Cui, S.; Prestipino, C.; Gellé, A.; Boussard-Pledel, C.; Ababou-Girard, S.; Trapananti, A.; Bureau, B.; Di Matteo, S. Possible Mechanism for Hole Conductivity in Cu–As–Te Thermoelectric Glasses: A XANES and EXAFS Study. J. Phys. Chem. C 2017, 121, 14045–14050. [Google Scholar] [CrossRef]
- Srinivasan, B.; Fontaine, B.; Gucci, F.; Dorcet, V.; Saunders, T.G.; Yu, M.; Cheviré, F.; Boussard-Pledel, C.; Halet, J.-F.; Gautier, R.; et al. Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb18SbTe20. Inorg. Chem. 2018, 57, 12976–12986. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Gellé, A.; Gucci, F.; Boussard-Pledel, C.; Fontaine, B.; Gautier, R.; Halet, J.-F.; Reece, M.J.; Bureau, B. Realizing a stable high thermoelectric zT ∼ 2 over a broad temperature range in Ge1−x−yGaxSbyTe via band engineering and hybrid flash-SPS processing. Inorg. Chem. Front. 2019, 6, 63–73. [Google Scholar] [CrossRef]
- Srinivasan, B.; Le Tonquesse, S.; Gellé, A.; Bourgès, C.; Monier, L.; Ohkubo, I.; Halet, J.-F.; Berthebaud, D.; Mori, T. Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe – an experimental and theoretical appraisal. J. Mater. Chem. A 2020, 8, 19805–19821. [Google Scholar] [CrossRef]
- Virtudazo, R.V.R.; Srinivasan, B.; Guo, Q.; Wu, R.T.; Takei, T.; Shimasaki, Y.; Wada, H.; Kuroda, K.; Bernik, S.; Mori, T. Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized via an alternative interfacial reaction and low-pressure SPS processing. Inorg. Chem. Front. 2020, 7, 4118–4132. [Google Scholar] [CrossRef]
- Camut, J.; Pham, N.; Truong, D.N.; Castillo-Hernandez, G.; Farahi, N.; Yasseri, M.; Mueller, E.; de Boor, J. Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices. Mater. Today Energy 2021, 21, 100718. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- Huang, X.-L.; Ao, D.-W.; Chen, T.-B.; Chen, Y.-X.; Li, F.; Chen, S.; Liang, G.-X.; Zhang, X.-H.; Zheng, Z.-H.; Fan, P. High-performance copper selenide thermoelectric thin films for flexible thermoelectric application. Mater. Today Energy 2021, 21, 100743. [Google Scholar] [CrossRef]
- Xue, K.; Wang, F.; Suwardi, A.; Han, M.-Y.; Teo, P.; Wang, P.; Wang, S.; Ye, E.; Li, Z.; Loh, X.J. Biomaterials by design: Harnessing data for future development. Mater. Today Bio 2021, 12, 100165. [Google Scholar] [CrossRef]
- Lin, J.; Ma, L.; Liu, Q.; Xie, K.; Hu, Y.; Zhang, L.; Li, S.; Lu, M.; Qiao, G. Continuous phase transition in thermoelectric Zn4Sb3. Mater. Today Energy 2021, 21, 100787. [Google Scholar] [CrossRef]
- Liu, E.; Negm, A.; Howlader, M. Thermoelectric generation via tellurene for wearable applications: Recent advances, research challenges, and future perspectives. Mater. Today Energy 2021, 20, 100625. [Google Scholar] [CrossRef]
- Maksymuk, M.; Parashchuk, T.; Dzundza, B.; Nykyruy, L.; Chernyak, L.; Dashevsky, Z. Highly efficient bismuth telluride–based thermoelectric microconverters. Mater. Today Energy 2021, 21, 100753. [Google Scholar] [CrossRef]
- Fu, C.; Wu, H.; Liu, Y.; He, J.; Zhao, X.; Zhu, T. Enhancing the Figure of Merit of Heavy-Band Thermoelectric Materials Through Hierarchical Phonon Scattering. Adv. Sci. 2016, 3, 1600035. [Google Scholar] [CrossRef]
- Zheng, Y.; Slade, T.J.; Hu, L.; Tan, X.Y.; Luo, Y.; Luo, Z.-Z.; Xu, J.; Yan, Q.; Kanatzidis, M.G. Defect engineering in thermoelectric materials: What have we learned? Chem. Soc. Rev. 2021, 50, 9022–9054. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Senguttuvan, T.; Sharma, V.K.; Chaudhary, S. Revisiting the thermoelectric properties of lead telluride. Mater. Today Energy 2021, 21, 100713. [Google Scholar] [CrossRef]
- Tang, S.; Bai, S.; Wu, M.; Luo, D.; Wang, D.; Yang, S.; Zhao, L.-D. Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: A first-principles prediction. Mater. Today Energy 2021, 23, 100914. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zou, R.; Wu, H.; Shi, H.; Yu, S.; Liu, Y. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Sci. Rep. 2015, 5, 11129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Haruna, A.-Y.; Ma, Z.; Li, W.; Li, J.; Luo, Y.; Zhang, D.; Yang, J. High Power Factor and Thermoelectric Figure of Merit in Sb2Si2Te6 through Synergetic Effect of Ca Doping. Chem. Mater. 2021, 33, 8097–8105. [Google Scholar] [CrossRef]
- Ramesh, V.P.; Sargolzaeiaval, Y.; Neumann, T.; Misra, V.; Vashaee, D.; Dickey, M.D.; Ozturk, M.C. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. npj Flex. Electron. 2021, 5, 5. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, T.; Ma, Z.; Zhang, D.; Guo, Z.; Jiang, Q.; Yang, J.; Yan, Q.; Kanatzidis, M.G. Cubic AgMnSbTe3 Semiconductor with a High Thermoelectric Performance. J. Am. Chem. Soc. 2021, 143, 13990–13998. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Luo, Y.; Fang, Y.; Qin, F.; Cao, X.; Xie, H.; Liu, J.; Dong, J.; Sanson, A.; Giarola, M.; et al. High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3. Adv. Energy Mater. 2021, 11, 2100661. [Google Scholar] [CrossRef]
- Hu, L.; Fang, Y.-W.; Qin, F.; Cao, X.; Zhao, X.; Luo, Y.; Repaka, D.V.M.; Luo, W.; Suwardi, A.; Soldi, T.; et al. High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nat. Commun. 2021, 12, 4793. [Google Scholar] [CrossRef]
- Luo, Y.; Hao, S.; Cai, S.; Slade, T.J.; Luo, Z.Z.; Dravid, V.P.; Wolverton, C.; Yan, Q.; Kanatzidis, M.G. High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering. J. Am. Chem. Soc. 2020, 142, 15187–15198. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Cai, S.; Hao, S.; Pielnhofer, F.; Hadar, I.; Luo, Z.-Z.; Xu, J.; Wolverton, C.; Dravid, V.P.; Pfitzner, A.; et al. High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule 2020, 4, 159–175. [Google Scholar] [CrossRef]
- Zhang, D.; Lim, W.Y.S.; Duran, S.S.F.; Loh, X.J.; Suwardi, A. Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Lett. 2022, 7, 720–735. [Google Scholar] [CrossRef]
- Cao, J.; Zheng, J.; Liu, H.; Tan, C.K.I.; Wang, X.; Wang, W.; Zhu, Q.; Li, Z.; Zhang, G.; Wu, J.; et al. Flexible Elemental Thermoelectrics with Ultra-high Power Density. Mater. Today Energy 2022, 100964. [Google Scholar] [CrossRef]
- Cao, J.; Tan, X.Y.; Jia, N.; Lan, D.; Solco, S.F.D.; Chen, K.; Chien, S.W.; Liu, H.; Tan, C.K.I.; Zhu, Q.; et al. Improved zT in Nb5Ge3–GeTe thermoelectric nanocomposite. Nanoscale 2021, 14, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Jia, J.; Zhang, Q.; Cao, F.; Liu, X.; Mao, J. A sketch for super-thermoelectric materials. Mater. Today Phys. 2022, 22, 100618. [Google Scholar] [CrossRef]
- Hong, M.; Lyu, W.; Wang, Y.; Zou, J.; Chen, Z.-G. Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance. J. Am. Chem. Soc. 2020, 142, 2672–2681. [Google Scholar] [CrossRef]
- Cao, J.; Chien, S.W.; Tan, X.Y.; Tan, C.K.I.; Zhu, Q.; Wu, J.; Wang, X.; Zhao, Y.; Yang, L.; Yan, Q.; et al. Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat 2021, 7, 476–482. [Google Scholar] [CrossRef]
- Qin, F.; Nikolaev, S.A.; Suwardi, A.; Wood, M.; Zhu, Y.; Tan, X.; Aydemir, U.; Ren, Y.; Yan, Q.; Hu, L.; et al. Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chem. Mater. 2020, 32, 10130–10139. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- Suwardi, A.; Cao, J.; Hu, L.; Wei, F.; Wu, J.; Zhao, Y.; Lim, S.H.; Yang, L.; Tan, X.Y.; Chien, S.W.; et al. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A 2020, 8, 18880–18890. [Google Scholar] [CrossRef]
- Suwardi, A.; Cao, J.; Zhao, Y.; Wu, J.; Chien, S.; Tan, X.; Hu, L.; Wang, X.; Wang, W.; Li, D.; et al. Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Mater. Today Phys. 2020, 14, 100239. [Google Scholar] [CrossRef]
- Suwardi, A.; Hu, L.; Wang, X.; Tan, X.Y.; Repaka, D.V.M.; Wong, L.-M.; Ni, X.; Liew, W.H.; Lim, S.H.; Yan, Q.; et al. Origin of High Thermoelectric Performance in Earth-Abundant Phosphide–Tetrahedrite. ACS Appl. Mater. Interfaces 2020, 12, 9150–9157. [Google Scholar] [CrossRef]
- Tan, L.P.; Sun, T.; Fan, S.; Ng, L.Y.; Suwardi, A.; Yan, Q.; Hng, H.H. Facile synthesis of Cu7Te4 nanorods and the enhanced thermoelectric properties of Cu7Te4–Bi0.4Sb1.6Te3 nanocomposites. Nano Energy 2013, 2, 4–11. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, H.; Zhang, Q.; Suwardi, A.; Cheng, X.; Zhang, Y.; Shu, W.; Wan, X.; Yang, Z.; Liu, Z.; et al. Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of p-Type Bi0.52Sb1.48Te3 Alloys. ACS Appl. Mater. Interfaces 2020, 12, 36186–36195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, S.; Wang, X.; Suwardi, A.; Chua, M.H.; Soo, X.Y.D.; Xu, J. Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro Lett. 2021, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Wang, D.; He, D.; He, W.; Zhu, F.; Wang, G.; He, J.; Zhao, L. Realizing High-Ranged Out-of-Plane ZTs in N-Type SnSe Crystals through Promoting Continuous Phase Transition. Adv. Energy Mater. 2019, 9, 1901334. [Google Scholar] [CrossRef]
- Luo, Y.; Cai, S.; Hua, X.; Chen, H.; Liang, Q.; Du, C.-F.; Zheng, Y.; Shen, J.; Xu, J.; Wolverton, C.; et al. High Thermoelectric Performance in Polycrystalline SnSe Via Dual-Doping with Ag/Na and Nanostructuring With Ag8SnSe6. Adv. Energy Mater. 2019, 9, 1803072. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, Y.; Luo, Z.; Hao, S.; Du, C.-F.; Liang, Q.; Li, Z.; Khor, K.A.; Hippalgaonkar, K.; Xu, J.; et al. n-Type SnSe 2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1702167. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y.; Wang, D.; Zhao, Q.; Gu, B.; Wu, H.; Zhang, H.; Ye, B.; Pennycook, S.J.; Zhao, L.-D. Ultrahigh Average ZT Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. J. Am. Chem. Soc. 2020, 142, 5901–5909. [Google Scholar] [CrossRef]
- Shi, X.-L.; Chen, W.-Y.; Zhang, T.; Zou, J.; Chen, Z.-G. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ. Sci. 2020, 14, 729–764. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Chen, G.; Ren, Z. Thermoelectric cooling materials. Nat. Mater. 2021, 20, 454–461. [Google Scholar] [CrossRef]
- Liu, Z.; Sato, N.; Gao, W.; Yubuta, K.; Kawamoto, N.; Mitome, M.; Kurashima, K.; Owada, Y.; Nagase, K.; Lee, C.-H.; et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 5, 1196–1208. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Chen, C.; Ren, Z.; Wang, C.; Liu, X.; Zhang, Q.; Chen, S. CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. J. Mater. Chem. A 2021, 9, 6634–6649. [Google Scholar] [CrossRef]
- Kozinsky, B.; Singh, D.J. Thermoelectrics by Computational Design: Progress and Opportunities. Annu. Rev. Mater. Sci. 2021, 51, 565–590. [Google Scholar] [CrossRef]
- Suwardi, A.; Lim, S.H.; Zheng, Y.; Wang, X.; Chien, S.W.; Tan, X.Y.; Zhu, Q.; Wong, L.M.N.; Cao, J.; Wang, W.; et al. Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping. J. Mater. Chem. C 2020, 8, 16940–16948. [Google Scholar] [CrossRef]
- Dinh, K.N.; Sun, Y.; Pei, Z.; Yuan, Z.; Suwardi, A.; Huang, Q.; Liao, X.; Wang, Z.; Chen, Y.; Yan, Q. Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small 2020, 16, e1905885. [Google Scholar] [CrossRef]
- Recatalà-Gómez, J.; Suwardi, A.; Nandhakumar, I.; Abutaha, A.; Hippalgaonkar, K. Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Appl. Energy Mater. 2020, 3, 2240–2257. [Google Scholar] [CrossRef]
- Suwardi, A.; Bash, D.; Ng, H.K.; Gomez, J.R.; Repaka, D.V.M.; Kumar, P.; Hippalgaonkar, K. Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. J. Mater. Chem. A 2019, 7, 23762–23769. [Google Scholar] [CrossRef]
- Suwardi, A.; Prasad, B.; Lee, S.; Choi, E.-M.; Lu, P.; Zhang, W.; Li, L.; Blamire, M.; Jia, Q.; Wang, H.; et al. Turning antiferromagnetic Sm0.34Sr0.66MnO3 into a 140 K ferromagnet using a nanocomposite strain tuning approach. Nanoscale 2016, 8, 8083–8090. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Suwardi, A.; Lim, S.L.; Wei, F.; Xu, J. Transparent flexible thin-film p–n junction thermoelectric module. npj Flex. Electron. 2020, 4, 19. [Google Scholar] [CrossRef]
- Wang, X.; Suwardi, A.; Zheng, Y.; Zhou, H.; Chien, S.W.; Xu, J. Enhanced Thermoelectric Performance of Nanocrystalline Indium Tin Oxide Pellets by Modulating the Density and Nanoporosity Via Spark Plasma Sintering. ACS Appl. Nano Mater. 2020, 3, 10156–10165. [Google Scholar] [CrossRef]
- Xie, H.; Su, X.; Bailey, T.P.; Zhang, C.; Liu, W.; Uher, C.; Tang, X.; Kanatzidis, M.G. Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. Chem. Mater. 2020, 32, 2639–2646. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.-D. Seeking new, highly effective thermoelectrics. Science 2020, 367, 1196–1197. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Zhang, Q.; Zhu, T.; Xia, K.; Zhao, X. Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering. J. Mater. Chem. A 2020, 8, 8455–8461. [Google Scholar] [CrossRef]
- Li, C.; Ma, S.; Wei, P.; Zhu, W.; Nie, X.; Sang, X.; Sun, Z.; Zhang, Q.; Zhao, W. Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 2020, 13, 535–544. [Google Scholar] [CrossRef]
- Hong, M.; Zheng, K.; Lyv, W.; Li, M.; Qu, X.; Sun, Q.; Xu, S.; Zou, J.; Chen, Z.-G. Computer-aided design of high-efficiency GeTe-based thermoelectric devices. Energy Environ. Sci. 2020, 13, 1856–1864. [Google Scholar] [CrossRef]
- Gucci, F.; Saunders, T.G.; Srinivasan, B.; Cheviré, F.; Ferluccio, D.; Bos, J.-W.G.; Reece, M.J. Hybrid Flash-SPS of TiNiCu0.05Sn with reduced thermal conductivity. J. Alloy. Compd. 2020, 837, 155058. [Google Scholar] [CrossRef]
- Fu, C.; Sun, Y.; Felser, C. Topological thermoelectrics. APL Mater. 2020, 8, 040913. [Google Scholar] [CrossRef]
- Bayikadi, K.S.; Wu, C.T.; Chen, L.-C.; Chen, K.-H.; Chou, F.-C.; Sankar, R. Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries. J. Mater. Chem. A 2020, 8, 5332–5341. [Google Scholar] [CrossRef]
- Qiu, Y.; Jin, Y.; Wang, D.; Guan, M.; He, W.; Peng, S.; Liu, R.; Gao, X.; Zhao, L.-D. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J. Mater. Chem. A 2019, 7, 26393–26401. [Google Scholar] [CrossRef]
- Mao, J.; Zhu, H.; Ding, Z.; Liu, Z.; Gamage, G.A.; Chen, G.; Ren, Z. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019, 365, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-Z.; Cai, S.; Hao, S.; Bailey, T.P.; Su, X.; Spanopoulos, I.; Hadar, I.; Tan, G.; Luo, Y.; Xu, J.; et al. High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-xGeTe with Midgap States. J. Am. Chem. Soc. 2019, 141, 16169–16177. [Google Scholar] [CrossRef]
- Kumar, P.M.; Jagadeesh Babu, V.; Subramanian, A.; Bandla, A.; Thakor, N.; Ramakrishna, S.; Wei, H. The Design of a Thermoelectric Generator and Its Medical Applications. Designs 2019, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J. Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 2004, 84, 2436–2438. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.E.; Case, E.D.; Schmidt, R.D.; Wu, C.-I.; Hogan, T.P.; Trejo, R.M.; Kirkham, M.J.; Lara-Curzio, E.; Kanatzidis, M.G. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J. Mater. Sci. 2013, 48, 6233–6244. [Google Scholar] [CrossRef]
- Crane, D.; LaGrandeur, J.; Jovovic, V.; Ranalli, M.; Adldinger, M.; Poliquin, E.; Dean, J.; Kossakovski, D.; Mazar, B.; Maranville, C. TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development. J. Electron. Mater. 2013, 42, 1582–1591. [Google Scholar] [CrossRef]
- National Research Council. The Airliner Cabin Environment and the Health of Passengers and Crew; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Air Transport Action Group, Facts & Figures. Available online: https://www.atag.org/facts-figures.html (accessed on 1 December 2021).
- Overton, J. Fact Sheet The Growth in Greenhouse Gas Emissions from Commercial Aviation. Available online: https://www.eesi.org/papers/view/fact-sheet-the-growth-in-greenhouse-gas-emissions-from-commercial-aviation (accessed on 1 December 2021).
- Huang, J. Aerospace and Aircraft Thermoelectric Applications. Available online: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2009/thursday/huang.pdf (accessed on 1 December 2021).
- Becker, T.; Elefsiniotis, A.; Kiziroglou, M. Thermoelectric Energy Harvesting in Aircraft. In Micro Energy Harvesting; Briand, D., Yeatman, E., Roundy, S., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2015; pp. 415–434. [Google Scholar] [CrossRef]
- Aerospace Vehicle Systems Institute, Wireless Avionics Intra-Communications. Available online: https://waic.avsi.aero/about/ (accessed on 1 December 2021).
- Crane, D.T.; Koripella, C.R.; Jovović, V. Validating Steady-State and Transient Modeling Tools for High-Power-Density Thermoelectric Generators. J. Electron. Mater. 2012, 41, 1524–1534. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Lai, S.; Yang, C.; Wu, H.; Xu, Y.-L. Energy efficient clustering for WSN-based structural health monitoring. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 2768–2776. [Google Scholar]
- Yedavalli, R.K.; Belapurkar, R.K. Application of wireless sensor networks to aircraft control and health management systems. J. Control Theory Appl. 2011, 9, 28–33. [Google Scholar] [CrossRef]
- Roach, D.P. Use of Comparative Vacuum Monitoring Sensors for Automated, Wireless Health Monitoring of Bridges and Infrastructure. In Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges; CRC Press: Boca Raton, FL, USA, 2018; pp. 2747–2751. [Google Scholar]
- Samson, D.; Kluge, M.; Becker, T.; Schmid, U. Energy harvesting for autonomous wireless sensor nodes in aircraft. Procedia Eng. 2010, 5, 1160–1163. [Google Scholar] [CrossRef] [Green Version]
- Elefsiniotis, A.; Kokorakis, N.; Becker, T.; Schmid, U. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens. Actuators A Phys. 2014, 206, 159–164. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Zabrocki, K.; Müller, E. TEG Design for Waste Heat Recovery at an Aviation Jet Engine Nozzle. Appl. Sci. 2018, 8, 2637. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.-G.; Liu, X.; Chen, S.; Wu, S.-Y.; Xiao, L.; Chen, Z.-X. Theoretical analysis on a segmented annular thermoelectric generator. Energy 2018, 157, 297–313. [Google Scholar] [CrossRef]
- Hammel, T.; Bennett, R.; Otting, W.; Fanale, S. Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Performance Prediction Model. In Proceedings of the 7th International Energy Conversion Engineering Conference, Denver, CO, USA, 2–5 August 2009; p. 4576. [Google Scholar]
- Jiang, M. An Overview of Radioisotope Thermoelectric Generators. Available online: http://large.stanford.edu/courses/2013/ph241/jiang1/ (accessed on 1 December 2021).
- Ambrosi, R.M.; Williams, H.; Watkinson, E.J.; Barco, A.; Mesalam, R.; Crawford, T.; Bicknell, C.; Samara-Ratna, P.; Vernon, D.; Bannister, N.; et al. European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration. Space Sci. Rev. 2019, 215, 55. [Google Scholar] [CrossRef] [Green Version]
- June, D.F.W.; Zakrajsek, J.F. NASA Special Session: Next-Generation Radioisotope Thermoelectric Generator (RTG) Discussion; National Aeronautics and Space Administration: Washington, DC, USA, 2017.
- Houtmann, J. Enhancing NASA’s Multi-Mission Radioisotope Thermoelectric Generator Using Highly Efficient Thermoelectric Materials. Maneto Undergrad. Res. J. 2020, 3. [Google Scholar] [CrossRef]
- Anderson, D.L. Chemical composition of the mantle. J. Geophys. Res. Earth Surf. 1983, 88, B41–B52. [Google Scholar] [CrossRef]
- Encyclopedia Britannica. Encyclopedia Britannica, Silicon Chemical Element. Available online: https://www.britannica.com/science/silicon (accessed on 1 December 2021).
- Kessler, V.; Gautam, D.; Hülser, T.; Spree, M.; Theissmann, R.; Winterer, M.; Wiggers, H.; Schierning, G.; Schmechel, R. Thermoelectric Properties of Nanocrystalline Silicon from a Scaled-Up Synthesis Plant. Adv. Eng. Mater. 2013, 15, 379–385. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, G.; Xu, J.; Wu, H.; Fu, C.; Liu, X.; He, J.; Zhao, X. The Role of Electron-Phonon Interaction in Heavily Doped Fine-Grained Bulk Silicons as Thermoelectric Materials. Adv. Electron. Mater. 2016, 2, 1600171. [Google Scholar] [CrossRef]
- Bux, S.K.; Blair, R.G.; Gogna, P.K.; Lee, H.; Chen, G.; Dresselhaus, M.S.; Kaner, R.B.; Fleurial, J.-P. Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Adv. Funct. Mater. 2009, 19, 2445–2452. [Google Scholar] [CrossRef]
- Schierning, G.; Theissmann, R.; Stein, N.; Petermann, N.; Becker, A.; Engenhorst, M.; Kessler, V.; Geller, M.R.; Beckel, A.; Wiggers, H.; et al. Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J. Appl. Phys. 2011, 110, 113515. [Google Scholar] [CrossRef]
- Claudio, T.; Stein, N.; Stroppa, D.G.; Klobes, B.; Koza, M.M.; Kudejova, P.; Petermann, N.; Wiggers, H.; Schierning, G.; Hermann, R.P. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties. Phys. Chem. Chem. Phys. 2014, 16, 25701–25709. [Google Scholar] [CrossRef] [Green Version]
- Stoetzel, J.; Schneider, T.; Mueller, M.M.; Kleebe, H.-J.; Wiggers, H.; Schierning, G.; Schmechel, R. Microstructure and thermoelectric properties of Si-WSi2 nanocomposites. Acta Mater. 2017, 125, 321–326. [Google Scholar] [CrossRef]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Bahrami, A.; Schierning, G.; Nielsch, K. Waste Recycling in Thermoelectric Materials. Adv. Energy Mater. 2020, 10, 1904159. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Pei, J.; Dong, J.; Zhuang, H.-L.; Gu, J.; Cao, Q.; Hu, H.; Lin, Z.; Li, J.-F. (Bi,Sb)2Te3/SiC nanocomposites with enhanced thermoelectric performance: Effect of SiC nanoparticle size and compositional modulation. Sci. China Mater. 2021, 64, 2551–2562. [Google Scholar] [CrossRef]
- Cai, B.; Zhuang, H.-L.; Pei, J.; Su, B.; Li, J.-W.; Hu, H.; Jiang, Y. Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time. Nano Energy 2021, 85, 106040. [Google Scholar] [CrossRef]
- Bose, S.; Acharya, H.N.; Banerjee, H.D. Electrocal, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk. J. Mater. Sci. 1993, 28, 5461–5468. [Google Scholar] [CrossRef]
- Bose, S. Thermal Conductivity of Magnesium Silicide Semiconductor Prepared from Rice Husk. Phys. Status Solidi 1992, 129, 127–134. [Google Scholar] [CrossRef]
- He, R.; Heyn, W.; Thiel, F.; Pérez, N.; Damm, C.; Pohl, D.; Rellinghaus, B.; Reimann, C.; Beier, M.; Friedrich, J.; et al. Thermoelectric properties of silicon and recycled silicon sawing waste. J. Mater. 2019, 5, 15–33. [Google Scholar] [CrossRef]
- Moen, M.; Halvorsen, T.; Mørk, K.; Velken, S. Recycling of silicon metal powder from industrial powder waste streams. Met. Powder Rep. 2017, 72, 182–187. [Google Scholar] [CrossRef]
- Isoda, Y.; Tada, S.; Kitagawa, H.; Shinohara, Y. Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources. J. Electron. Mater. 2016, 45, 1772–1778. [Google Scholar] [CrossRef]
- Mesaritis, G.; Symeou, E.; Delimitis, A.; Oikonomidis, S.; Jaegle, M.; Tarantik, K.; Nicolaou, C.; Kyratsi, T. Recycling Si-kerf from photovoltaics: A very promising route to thermoelectrics. J. Alloy. Compd. 2019, 775, 1036–1043. [Google Scholar] [CrossRef]
- Britannica. Germanium Properties. Available online: https://www.britannica.com/science/germanium (accessed on 1 December 2021).
- Dismukes, J.P.; Ekstrom, L.; Paff, R.J. Lattice Parameter and Density in Germanium-Silicon Alloys. J. Phys. Chem. 1964, 68, 3021–3027. [Google Scholar] [CrossRef]
- Basu, R.; Singh, A. High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Mater. Today Phys. 2021, 21, 100468. [Google Scholar] [CrossRef]
- Virginia Semiconductor. The General Properties of Si, Ge, SiGe, SiO2 and Si3N4. Available online: https://studylib.net/doc/18232119/the-general-properties-of-si--ge--sige--sio2-and-si3n4 (accessed on 1 December 2021).
- Taborda, J.A.P.; Rojo, M.M.; Maiz, J.; Neophytou, N.; Martin-Gonzalez, M. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 2016, 6, 32778. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Romano, G.; Greaney, P.A. Enhanced Thermoelectric Performance of Polycrystalline Si0.8Ge0.2 Alloys through the Addition of Nanoscale Porosity. Nanomater. 2021, 11, 2591. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, C.; Wang, Y.; Yang, S.; Yu, Y.; He, H. Super Stable Ferroelectrics with High Curie Point. Sci. Rep. 2016, 6, 24139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.-L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Pawar, H.; Sanyal, S.P. Structural stability, electronic and thermoelectric properties of ruthenium silicide. J. Alloy. Compd. 2020, 826, 154164. [Google Scholar] [CrossRef]
- Vining, C.B. Extrapolated thermoelectric figure of merit of ruthenium silicide. AIP Conf. Proc. 1992, 246, 338–342. [Google Scholar] [CrossRef]
- Sawade, Y.; Ohta, T.; Yamamoto, A.; Tanaka, T.; Kamisako, K. Large thermoelectric figure of merit value of undoped polycrystalline ruthenium sesquisilicide. AIP Conf. Proc. 1994, 316, 99–104. [Google Scholar] [CrossRef]
- Krivosheev, A.E.; Ivanenko, L.I.; Filonov, A.B.; Shaposhnikov, V.; Behr, G.; Schumann, J.; Borisenko, V. Thermoelectric efficiency of single crystal semiconducting ruthenium silicide. Semiconductors 2006, 40, 27–32. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Agarwal, A.; Coutant, Z.; Hall, M.J.; Liu, J.; Liu, R.; Malhotra, A.; Norouzzadeh, P.; Öztürk, M.C.; Ramesh, V.P.; et al. Thermoelectric silicides: A review. Jpn. J. Appl. Phys. 2017, 56, 05DA04. [Google Scholar] [CrossRef]
- Snyder, J.; Caillat, T. Using the Compatibility Factor to Design High Efficiency Segmented Thermoelectric Generators. MRS Proc. 2003, 793, S2.1. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Cao, X.; Hu, Y.; Wang, F.; Shi, J. Theoretical analysis of annular thermoelectric generators made of functionally graded materials. AIP Adv. 2021, 11, 025333. [Google Scholar] [CrossRef]
- Hedegaard, E.M.J.; Johnsen, S.; Bjerg, L.; Borup, K.A.; Iversen, B.B. Functionally Graded Ge1–xSix Thermoelectrics by Simultaneous Band Gap and Carrier Density Engineering. Chem. Mater. 2014, 26, 4992–4997. [Google Scholar] [CrossRef]
- Rogolino, P.; Cimmelli, V.A. Thermoelectric Efficiency of Silicon–Germanium Alloys in Finite-Time Thermodynamics. Entropy 2020, 22, 1116. [Google Scholar] [CrossRef] [PubMed]
- Samson, D.; Kluge, M.; Fuss, T.; Schmid, U.; Becker, T. Flight Test Results of a Thermoelectric Energy Harvester for Aircraft. J. Electron. Mater. 2012, 41, 1134–1137. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, Q.; Sun, H.; Liu, P.; Hu, D.; Pei, Y.; Liu, W.; Crispin, X.; Fabiano, S.; Ma, Y.; et al. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. Adv. Mater. 2021, 33, 2102990. [Google Scholar] [CrossRef] [PubMed]
Acronym | Definition | Descriptions | Power/GPHS | Th (K) |
---|---|---|---|---|
GPHS-RTG | General-purpose heat source RTG | This RTG was designed to operate in vacuum only. It was flown on PNH, Cassini, and other missions. Not a modular system. | 290/10 | 1273 |
MMRTG | Multimission RTG | Operated in vacuum and atmosphere. Flown on the Curiosity rover. Not a modular system. | 110/8 | 803 |
eMMRTG | Enhanced multimission RTG | A potential enhanced version of the MMRTG. Designed to operate in vacuum and atmosphere. Not a modular system. While not yet approved for development, it is extremely well modelled, and its system requirements are well understood. | 145/8 | 873 |
Operating Temperature | n-Type | p-Type | ||||
---|---|---|---|---|---|---|
Low | Mid | High | Low | Mid | High | |
1 | Bi2Te3−xSex | 1-2-2 Zintl | La3−xTe4 composite | Bi2−xSbxTe3 | 9-4-9 Zintl | 14-1-11 Zintl |
2 | Bi2Te3−xSex | 1-2-2 Zintl | La3−xTe4 | Bi2−xSbxTe3 | 9-4-9 Zintl | 14-1-11 Zintl |
3 | Bi2Te3−xSex | SKD | La3−xTe4 composite | Bi2−xSbxTe3 | SKD | 14-1-11 Zintl |
4 | Bi2Te3−xSex | SKD | La3−xTe4 | Bi2−xSbxTe3 | SKD | 14-1-11 Zintl |
5 | Bi2Te3−xSex | Mg2Si1−xSnx | La3−xTe4 composite | Bi2−xSbxTe3 | Tetrahedrite | 14-1-11 Zintl |
6 | Bi2Te3−xSex | n-HH | La3−xTe4 composite | Bi2−xSbxTe3 | p-HH | 14-1-11 Zintl |
7 | Bi2Te3−xSex | PbTe | La3−xTe4 composite | Bi2−xSbxTe3 | TAGS | 14-1-11 Zintl |
8 | Bi2Te3−xSex | Nano PbTe | La3−xTe4 composite | Bi2−xSbxTe3 | TAGS | 14-1-11 Zintl |
9 | - | Mg2Si1−xSnx | Nano SiGe | - | MnSi1.7 | Nano SiGe |
10 | - | - | La3−xTe4 composite | - | - | 14-1-11 Zintl |
11 | - | - | La3−xTe4 | - | - | - |
12 | - | - | Nanobulk SiGe | - | - | Nanobulk SiGe |
13 | Bi2Te3−xSex | - | Bi2−xSbxTe3 | - | ||
14 | Bi2Te3−xSex | - | La3−xTe4 composite | Bi2−xSbxTe3 | - | 14-1-11 Zintl |
15 | Bi2Te3−xSex | SKD | - | Bi2−xSbxTe3 | SKD | - |
16 | Bi2Te3−xSex | PbTe | - | Bi2−xSbxTe3 | TAGS | - |
17 | Bi2Te3−xSex | Mg2Si1−xSnx | La3−xTe4 | Bi2−xSbxTe3 | Tetrahedrite | 14-1-11 Zintl |
18 | Bi2Te3−xSex | n-HH | La3−xTe4 | Bi2−xSbxTe3 | p-HH | 14-1-11 Zintl |
19 | Bi2Te3−xSex | PbTe | La3−xTe4 | Bi2−xSbxTe3 | TAGS | 14-1-11 Zintl |
20 | Bi2Te3−xSex | nano PbTe | La3−xTe4 | Bi2−xSbxTe3 | 14-1-11 Zintl | |
21 | - | - | La3−xTe4 | - | - | 14-1-11 Zintl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran, S.S.F.; Zhang, D.; Lim, W.Y.S.; Cao, J.; Liu, H.; Zhu, Q.; Tan, C.K.I.; Xu, J.; Loh, X.J.; Suwardi, A. Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals 2022, 12, 307. https://doi.org/10.3390/cryst12030307
Duran SSF, Zhang D, Lim WYS, Cao J, Liu H, Zhu Q, Tan CKI, Xu J, Loh XJ, Suwardi A. Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals. 2022; 12(3):307. https://doi.org/10.3390/cryst12030307
Chicago/Turabian StyleDuran, Solco Samantha Faye, Danwei Zhang, Wei Yang Samuel Lim, Jing Cao, Hongfei Liu, Qiang Zhu, Chee Kiang Ivan Tan, Jianwei Xu, Xian Jun Loh, and Ady Suwardi. 2022. "Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation" Crystals 12, no. 3: 307. https://doi.org/10.3390/cryst12030307
APA StyleDuran, S. S. F., Zhang, D., Lim, W. Y. S., Cao, J., Liu, H., Zhu, Q., Tan, C. K. I., Xu, J., Loh, X. J., & Suwardi, A. (2022). Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals, 12(3), 307. https://doi.org/10.3390/cryst12030307