Dielectric Properties of Mg2TiO4-Doped Ca0.65Sr0.35Zr0.65Ti0.35O3 with High Withstand Voltage and Low Loss
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, S.K.; Tummala, R.R. Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci. Mater. Electron. 2000, 11, 253–268. [Google Scholar] [CrossRef]
- Rahayu, R.; Kang, M.-G.; Do, Y.-H.; Hwang, J.-H.; Kang, C.-Y.; Yoon, S.-J. Electrical characteristics of Ba0.6Sr0.4TiO3 Thin-film chip capacitors for embedded passive components. IEEE Electron Device Lett. 2013, 34, 99–101. [Google Scholar] [CrossRef]
- Tuichai, W.; Danwittayakul, S.; Maensiri, S.; Thongbai, P. Investigation on Temperature stability performance of giant permittivity (In+Nb) in co–doped TiO2 ceramic: A crucial aspect for practical electronic applications. RSC Adv. 2016, 6, 5582–5589. [Google Scholar] [CrossRef]
- Chen, X.; Mo, T.; Huang, B.; Liu, Y.; Yu, P. Capacitance properties in Ba0.3Sr0.7Zr0.18Ti0.82O3 Thin films on silicon substrate for thin film capacitor applications. Crystals 2020, 10, 318. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Xie, B.; Huang, K.; Wang, Z.; Yu, P. Thickness-dependence of growth rate, dielectric response, and capacitance properties in Ba0.67Sr0.33TiO3/LaNiO3 hetero-structure thin films for film capacitor applications. Thin Solid Film. 2019, 685, 269–274. [Google Scholar] [CrossRef]
- Groner, M.D.; Elam, J.W.; Fabreguette, F.H.; George, S.M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Film. 2002, 413, 186–197. [Google Scholar] [CrossRef]
- Acquaviva, S.; Giorgi, M.L.D.; Elia, L.M.F.; Leggieri, G.; Luches, A.; Martino, M.; Zocco, A. Laser deposition of thin SiO2 and ITO films. Appl. Surf. Sci. 2000, 168, 244–247. [Google Scholar] [CrossRef]
- Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. 1998, R22, 269–322. [Google Scholar] [CrossRef]
- Baek, E.; Yun, Y.S.; Kim, H.K.; Lee, S.H.; Lee, S.G.; Im, I.H.; Lee, Y.H. Effect of post-annealing on (Ca0.7Sr0.3)(Zr0.8Ti0.2)O3 films on Pt and Cu substrates fabricated by aerosol deposition. J. Nanosci. Nanotechnol. 2015, 15, 8478–8483. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.K.; Yun, Y.S.; Lee, S.G.; Lee, Y.H. Dielectric properties of (Ca0.7Sr0.3)(Zr0.8Ti0.2)O3 thin films with different deposition temperatures. J. Nanosci. Nanotechnol. 2015, 15, 2330–2332. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Y.; Ji, H.; He, Q.; Chen, X.; Yu, P. Enhanced temperature stable dielectric response and high dielectric strength observed in (CaZr)0.65(SrTi)0.35O3 thin film. J. Alloy Compd. 2021, 876, 160232. [Google Scholar] [CrossRef]
- Zhai, J.; Yao, X.; Xu, Z.; Chen, H. Ferroelectric properties of PbxSr1−xTiO3 and its compositionally graded thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 2006, 100, 034108. [Google Scholar] [CrossRef]
- Cheng, Z.X.; Wang, X.L.; Kimura, H.; Ozawa, K.; Dou, S.X. La and Nb codoped BiFeO3 multiferroic thin films on LaNiO3/Si and IrO2/Si substrates. Appl. Phys. Lett. 2008, 92, 092902. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, M.; Mahajan, A.; Tkach, A.; Vilarinho, P.M. Interface-based reduced coercivity and leakage currents of BiFeO3 thin films: A comparative study. Mater. Des. 2018, 160, 1322–1334. [Google Scholar] [CrossRef]
- Gao, Y.; Yuan, M.; Sun, X.; Ouyang, J. In situ preparation of high quality BaTiO3 dielectric films on Si at 350–500 °C. J. Mater. Sci. Mater. Electron. 2016, 28, 337–343. [Google Scholar] [CrossRef]
- Meng, X.J.; Ma, Z.X.; Sun, J.L.; Bo, L.X.; Ye, H.J.; Guo, S.L.; Chu, J.H. Highly oriented PbZr0.3Ti0.7O3 thin film on LaNiO3-coated Si substrate derived from a chemical solution technique. Thin Solid Film. 2000, 372, 271–275. [Google Scholar] [CrossRef]
- Sengupta, L.C.; Sengupta, S. Breakthrough advances in low loss, tunable dielectric materials. Mater. Res. Innov. 1999, 2, 278–282. [Google Scholar] [CrossRef]
- Sengupta, L.; Warwick, M. Ceramic Ferroelectric Composite Material–BSTO–Magnesium Based Compound. U.S. Patent 5,635,434, 3 June 1997. [Google Scholar]
- Chen, Y.; Dong, X.-L.; Liang, R.-H.; Li, J.-T.; Wang, Y.-L. Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics. J. Appl. Phys. 2005, 98, 064107. [Google Scholar] [CrossRef]
- Yan, L.; Chen, L.F.; Tan, C.Y.; Ong, C.K.; Anisur Rahman, M.; Osipowicz, T. Ba0.1Sr0.9TiO3-BaTi4O9 composite thin films with improved microwave dielectric properties. Eur. Phys. J. B Condens. Matter Complex Syst. 2004, 41, 201–205. [Google Scholar] [CrossRef]
- Jain, M.; Majumder, S.B.; Katiyar, R.S.; Agrawal, D.C.; Bhalla, A.S. Dielectric properties of sol–gel-derived MgO: Ba0.5Sr0.5TiO3 thin-film composites. Appl. Phys. Lett. 2002, 81, 3212–3214. [Google Scholar] [CrossRef]
- Jain, M.; Majumder, S.B.; Yuzyuk, Y.; Katiyar, R.S.; Bhalla, A.S.; Miranda, F.A.; Van Keuls, F.W. Dielectric properties and leakage current characteristics of sol-gel derived (Ba0.5Sr0.5)TiO3: MgTiO3 thin film composites. Ferroelectr. Lett. 2003, 30, 99–107. [Google Scholar] [CrossRef]
- Chou, X.; Zhai, J.; Yao, X. Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3–Mg2TiO4 microwave composite ceramics. Appl. Phys. Lett. 2007, 91, 122908. [Google Scholar] [CrossRef]
- Gao, L.; Zhai, J.; Yao, X.; Xu, Z. MgTiO3 and Ba0.60Sr0.40Mg0.15Ti0.85O3 composite thin films with promising dielectric properties for tunable applications. J. Am. Ceram. Soc. 2008, 91, 3109–3112. [Google Scholar] [CrossRef]
- Jia, Q.; Ji, H.; Li, X.; Liu, S.; Jin, Z. Sinterability and dielectric properties of Ba0.55Sr0.4Ca0.05TiO3–CaTiSiO5–Mg2TiO4 composite ceramics. J. Alloy Compd. 2011, 509, 10155–10160. [Google Scholar] [CrossRef]
- Kell, R.C.; Greenham, A.C.; Olds, G.C.R. High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 1973, 56, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Sato, A.; Okamoto, E. An SiO2-Ta2O5 thin film capacitor. IEEE Trans. Parts Hybrids Packag. 1973, 9, 161–166. [Google Scholar] [CrossRef]
Target | x% Mg2TiO4-CSZT | LNO |
---|---|---|
Substrate distance | 4 cm | 4 cm |
Substrate rotation rate | 10–20 r/min | 10–20 r/min |
Base vacuum | 4.0 × 10−4 Pa | 4.0 × 10−4 Pa |
Sputtering temperature | 575 °C | 550 °C |
Sputtering time | 600 min | 30 min |
Sputtering power | 70 W | 40 W |
Sputtering gas pressure | 2 Pa | 2 Pa |
Sputtering atmosphere ratio | Ar/O2 = 4:3 | Ar/O2 = 4:1 |
x (%) | 0 | 2 | 4 | 6 | 8 |
---|---|---|---|---|---|
Thickness of the x% Mg2TiO4-CSZT/LNO layer (nm) | 972 (±2) | 732 (±1) | 934 (±3) | 995 (±3) | 1137 (±2) |
Growth rate of x% Mg2TiO4-CSZT films (nm/min) | 1.40 | 1.09 | 1.41 | 1.49 | 1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Huang, B.; Chen, X.; Yu, P. Dielectric Properties of Mg2TiO4-Doped Ca0.65Sr0.35Zr0.65Ti0.35O3 with High Withstand Voltage and Low Loss. Crystals 2022, 12, 405. https://doi.org/10.3390/cryst12030405
Liu Y, Huang B, Chen X, Yu P. Dielectric Properties of Mg2TiO4-Doped Ca0.65Sr0.35Zr0.65Ti0.35O3 with High Withstand Voltage and Low Loss. Crystals. 2022; 12(3):405. https://doi.org/10.3390/cryst12030405
Chicago/Turabian StyleLiu, Yun, Binbin Huang, Xiaoyang Chen, and Ping Yu. 2022. "Dielectric Properties of Mg2TiO4-Doped Ca0.65Sr0.35Zr0.65Ti0.35O3 with High Withstand Voltage and Low Loss" Crystals 12, no. 3: 405. https://doi.org/10.3390/cryst12030405
APA StyleLiu, Y., Huang, B., Chen, X., & Yu, P. (2022). Dielectric Properties of Mg2TiO4-Doped Ca0.65Sr0.35Zr0.65Ti0.35O3 with High Withstand Voltage and Low Loss. Crystals, 12(3), 405. https://doi.org/10.3390/cryst12030405