Sustainable Composites with Solid Waste Materials
- Obtaining renewable energy from the electrochemical oxidation of methanol (Liaqat et al. [11])
- Geopolymer concrete optimized with the Taguchi method (Karthik and Mohan [12])
- Speciation of the heterogeneous oxidation of Cr(III) to Cr (VI) and the surface of the reacted δ-MnO2 (Chen et al. [13])
- Optimization of steel pavement structure and epoxy asphalt (Xu et al. [14])
- Study of the synergistic effect of surfactant and foaming process on the foaming characteristics and rheological properties of foamed bitumen (Lu et al. [15])
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, K.; Cui, N.; Zhao, S.; Zheng, K.; Ji, X.; Feng, L.; Cheng, X.; Xie, N. Low-Carbon Sustainable Composites from Waste Phosphogypsum and Their Environmental Impacts. Crystals 2021, 11, 719. [Google Scholar] [CrossRef]
- Martín, D.A.; Costafreda, J.L.; Costafreda, J.L., Jr.; Presa, L. Improving the Performance of Mortars Made from Recycled Aggregates by the Addition of Zeolitised Cineritic Tuff. Crystals 2022, 12, 77. [Google Scholar] [CrossRef]
- López-Uceda, A.; Fernández-Ledesma, E.; Salas-Morera, L.; Jiménez, J.R.; Suescum-Morales, D. Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties. Crystals 2021, 11, 1518. [Google Scholar] [CrossRef]
- Albuquerque, A.; Pacheco, J.N.; de Brito, J. Eurocode Design of Recycled Aggregate Concrete for Chloride Environments: Stochastic Modeling of Chloride Migration and Reliability-Based Calibration of Cover. Crystals 2021, 11, 284. [Google Scholar] [CrossRef]
- Paula Junior, A.C.; Jacinto, C.; Oliveira, T.M.; Polisseni, A.E.; Brum, F.M.; Teixeira, E.R.; Mateus, R. Characterisation and Life Cycle Assessment of Pervious Concrete with Recycled Concrete Aggregates. Crystals 2021, 11, 209. [Google Scholar] [CrossRef]
- Razzaq, A.M.; Majid, D.L.; Basheer, U.M.; Aljibori, H.S.S. Research Summary on the Processing, Mechanical and Tribological Properties of Aluminium Matrix Composites as Effected by Fly Ash Reinforcement. Crystals 2021, 11, 1212. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; Sun, H.; Xu, F. Effect of Fly Ash Belite Cement on Hydration Performance of Portland Cement. Crystals 2021, 11, 740. [Google Scholar] [CrossRef]
- Suárez-Macías, J.; Terrones-Saeta, J.M.; Iglesias-Godino, F.J.; Corpas-Iglesias, F.A. Development of Cold In-Place Recycling with Bitumen Emulsion and Biomass Bottom Ash. Crystals 2021, 11, 384. [Google Scholar] [CrossRef]
- Ali, T.; Saand, A.; Bangwar, D.K.; Buller, A.S.; Ahmed, Z. Mechanical and Durability Properties of Aerated Concrete Incorporating Rice Husk Ash (RHA) as Partial Replacement of Cement. Crystals 2021, 11, 604. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G.; Matos, J.C. Effect of Biomass Fly Ash on Fresh and Hardened Properties of High Volume Fly Ash Mortars. Crystals 2021, 11, 233. [Google Scholar] [CrossRef]
- Liaqat, R.; Mansoor, M.A.; Iqbal, J.; Jilani, A.; Shakir, S.; Kalam, A.; Wageh, S. Fabrication of Metal (Cu and Cr) Incorporated Nickel Oxide Films for Electrochemical Oxidation of Methanol. Crystals 2021, 11, 1398. [Google Scholar] [CrossRef]
- Karthik, S.; Mohan, K.S.R. A Taguchi Approach for Optimizing Design Mixture of Geopolymer Concrete Incorporating Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume. Crystals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Chen, K.; Bocknek, L.; Manning, B. Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide. Crystals 2021, 11, 443. [Google Scholar] [CrossRef]
- Xu, X.; Gu, Y.; Huang, W.; Chen, D.; Zhang, C.; Yang, X. Structural Optimization of Steel—Epoxy Asphalt Pavement Based on Orthogonal Design and GA—BP Algorithm. Crystals 2021, 11, 417. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, S.; Xu, S.; Dong, N.; Yu, H. Rheological Behavior of Warm Mix Asphalt Modified with Foaming Process and Surfactant Additive. Crystals 2021, 11, 410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawluczuk, E.; Skoczko, I.; Fernández Ledesma, E. Sustainable Composites with Solid Waste Materials. Crystals 2022, 12, 411. https://doi.org/10.3390/cryst12030411
Pawluczuk E, Skoczko I, Fernández Ledesma E. Sustainable Composites with Solid Waste Materials. Crystals. 2022; 12(3):411. https://doi.org/10.3390/cryst12030411
Chicago/Turabian StylePawluczuk, Edyta, Iwona Skoczko, and Enrique Fernández Ledesma. 2022. "Sustainable Composites with Solid Waste Materials" Crystals 12, no. 3: 411. https://doi.org/10.3390/cryst12030411
APA StylePawluczuk, E., Skoczko, I., & Fernández Ledesma, E. (2022). Sustainable Composites with Solid Waste Materials. Crystals, 12(3), 411. https://doi.org/10.3390/cryst12030411