Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CVD Growth of Fe3O4
2.3. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X.; Zhang, L.; Chen, S.; Liu, N.; Jindal, A.; et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 2034. [Google Scholar] [CrossRef] [PubMed]
- Ostwal, V.; Shen, T.; Appenzeller, J. Efficient Spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 2020, 32, 1906021. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, C.; Chen, J.; He, T.; Li, H.; Yang, Z.; Xie, L.; Wang, Z.; Zhang, K. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure. J. Semicond. 2020, 41, 082002. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Clark, G.; Klein, D.R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K.L.; Wilson, N.; McGuire, M.A.; Cobden, D.H.; Xiao, D.; et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnology 2018, 13, 544–548. [Google Scholar]
- Gong, C.; Kim, E.M.; Wang, Y.; Lee, G.; Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 2019, 10, 2657. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, T.; Ding, M.; Dong, B.; Li, Y.; Chen, M.; Li, X.; Huang, J.; Wang, H.; Zhao, X.; et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559. [Google Scholar] [CrossRef]
- Cui, F.; Zhao, X.; Xu, J.; Tang, B.; Shang, Q.; Shi, J.; Huan, Y.; Liao, J.; Chen, Q.; Hou, Y. Controlled growth and thickness-fependent vonduction- type Transition of 2D Ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896. [Google Scholar] [CrossRef]
- Senn, M.S.; Wright, J.P.; Attfield, J.P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 2011, 481, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Piekarz, P.; Parlinski, K.; Oles, A.M. Mechanism of the Verwey transition in magnetite. Phys. Rev. Lett. 2006, 97, 156402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verwey, E.J.W. Electron conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328. [Google Scholar] [CrossRef]
- Dijken, S.V.; Fain, X.; Watts, S.M.; Coey, J. Negative magnetoresistance in Fe3O4/Au/Fe spin valves. Phys. Rev. B 2004, 70, 052409. [Google Scholar] [CrossRef]
- Iwata-Harms, J.M.; Chopdekar, R.V.; Wong, F.J.; Nelson-Cheeseman, B.B.; Jenkins, C.A.; Arenholz, E.; Suzuki, Y. Magnetotransport in La0.7Sr0.3MnO3/CuCr2O4/Fe3O4 magnetic junctions. Appl. Phys. Lett. 2015, 106, 012405. [Google Scholar] [CrossRef]
- Yoon, K.S.; Koo, J.H.; Do, Y.H.; Kim, K.W.; Kim, C.O.; Jin, P.H. Performance of Fe3O4/AlOx/CoFe magnetic tunnel junctions based on half-metallic Fe3O4 electrodes. J. Magn. Magn. Mater. 2005, 285, 125–129. [Google Scholar] [CrossRef]
- Wang, W.G.; Li, M.; Hageman, S.; Chien, C.L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2011, 11, 64–68. [Google Scholar] [CrossRef]
- Zhao, L.B.; Mi, W.B.; Jiang, E.Y.; Bai, H.L. Spin-polarized transport of electrons from polycrystalline Fe3O4 to amorphous Si. Appl. Phys. Lett. 2007, 91, 052113. [Google Scholar] [CrossRef]
- Ong, H.C.; Zhu, A.X.E.; Du, G.T. Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Appl. Phys. Lett. 2002, 80, 941–943. [Google Scholar] [CrossRef]
- Arora, S.K.; Wu, H.-C.; Choudhary, R.J.; Shvets, I.V.; Mryasov, O.N.; Yao, H.; Ching, W.Y. Giant magnetic moment in epitaxial Fe3O4 thin films on MgO(100). Phys. Rev. B 2008, 77, 134443. [Google Scholar] [CrossRef]
- Guan, X.; Zhou, G.; Xue, W.; Quan, Z.; Xu, X. The investigation of giant magnetic moment in ultrathin Fe3O4 films. APL Mater. 2016, 4, 036104. [Google Scholar] [CrossRef] [Green Version]
- Kado, T. Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO(001) substrates. J. Appl. Phys. 2008, 103, 043902. [Google Scholar] [CrossRef]
- Ziese, M.; Blythe, H.J. Magnetoresistance of magnetite. J. Phys. Condens. Matter 2000, 12, 13. [Google Scholar] [CrossRef]
- Sterbinsky, G.E.; Cheng, J.; Chiu, P.T.; Wessels, B.W.; Keavney, D.J. Investigation of heteroepitaxial growth of magnetite thin films. J. Vac. Sci. Technol. B 2007, 25, 1389–1392. [Google Scholar] [CrossRef]
- Lu, Z.L.; Xu, M.X.; Zou, W.Q.; Wang, S.; Liu, X.C.; Lin, Y.B.; Xu, J.P.; Lu, Z.H.; Wang, J.F.; Lv, L.Y.; et al. Large low field magnetoresistance in ultrathin nanocrystalline magnetite Fe3O4 films at room temperature. Appl. Phys. Lett. 2007, 91, 102508. [Google Scholar] [CrossRef]
- Dawn, R.; Zzaman, M.; Bharadwaj, R.R.; Kiran, C.; Shahid, R.; Verma, V.K.; Sahoo, S.K.; Amemiya, K.; Singh, V.R. Direct evidence to control the magnetization in Fe3O4 thin films by N2 ion implantation: A soft X-ray magnetic circular dichroism study. J. Sol-Gel Sci. Technol. 2021, 99, 461–468. [Google Scholar] [CrossRef]
- Mantovan, R.; Vangelista, S.; Cocco, S. Chemical vapor deposition of polycrystalline Fe3O4 thin films by using the cyclohexadiene iron tricarbonyl liquid precursor. J. Appl. Phys. 2012, 111, 312. [Google Scholar] [CrossRef]
- Kan, D.; Sugano, S.; Kosugi, Y.; Kobayashi, K.; Uebayashi, N.; Koganezawa, T.; Shimakawa, Y. Selective growth of α-Fe2O3, γ- Fe2O3 and Fe3O4 at low temperatures and under ambient pressure. Jpn. J. Appl. Phys. 2019, 58, 095504. [Google Scholar] [CrossRef]
- Yin, C.; Gong, C.; Chu, J.; Wang, X.; Yan, C.; Qian, S. Ultrabroadband photodetectors up to 10.6 μm based on 2D Fe3O4 nanosheets. Adv. Mater. 2020, 32, 2002237. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Cao, L.; Guo, Q.; Liang, J.; Kou, Z.; Zhou, X.; Huang, Z.; Zhai, Y.; Du, J.; You, B.; Zhao, H.; et al. Preparation of sputtered Fe3O4 thin film. J. Mater. Sci. Mater. Electron. 2021, 32, 23645–23653. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, C.; Yang, Y.; Yu, T.; Luo, X. The role of strain on the magnetic properties of confined Fe3O4 nanocrystals in Al2O3 matrix. Mater. Lett. 2019, 239, 52–55. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, C.; Fang, X.; Zhang, D.; Zhu, M.; Zhao, D.; Zhen, C.; Ma, L.; Hou, D. Modulation on the magnetic and electrical properties of Fe3O4 thin films through strain relaxation. J. Magn. Magn. Mater. 2021, 536, 168128. [Google Scholar] [CrossRef]
- Nongjai, R.; Samad, R.; Singh, V.R.; Verma, V.K.; Kandasami, A. Magnetic and electronic structures of N implanted iron oxide thin films. J. Magn. Magn. Mater. 2021, 527, 167703. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Sun, J.R.; Han, Y.N.; Xie, X.Y.; Shen, J.; Rong, C.B.; He, S.L.; Shen, B.G. Microstructure and magnetic properties of strained Fe3O4 films. J. Appl. Phys. 2008, 103, 07D703. [Google Scholar] [CrossRef]
Method | Substrate | Thickness (nm) | Ms (emu/cm3) | Reference |
---|---|---|---|---|
MBE | MgO | 5 | 922 | [21] |
MBE | SrTiO3 | 3 | 1017 | [22] |
PLD | MgO | 200/150 | 119.7/109.2 | [24] |
MS | SiO2 | 15 | 301 | [26] |
SGSC | Si | 650 | 1.9 µB/u.c. | [27] |
CVD | Si/SiO2 | 100/24.8/13.4 | Not Measured | [28] |
CVD | SrTiO3 | 200–30 | 500 | [29] |
CVD | mica | 1.95/4.2/15 | Not Measured | [30] |
CVD | Al2O3 | 16/4 | 445/752 | In this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, F.; Zhou, R.; Qian, Z.; Chen, Y.; Xie, L. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films. Crystals 2022, 12, 485. https://doi.org/10.3390/cryst12040485
Lan F, Zhou R, Qian Z, Chen Y, Xie L. Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films. Crystals. 2022; 12(4):485. https://doi.org/10.3390/cryst12040485
Chicago/Turabian StyleLan, Feifei, Rui Zhou, Ziyue Qian, Yuansha Chen, and Liming Xie. 2022. "Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films" Crystals 12, no. 4: 485. https://doi.org/10.3390/cryst12040485
APA StyleLan, F., Zhou, R., Qian, Z., Chen, Y., & Xie, L. (2022). Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films. Crystals, 12(4), 485. https://doi.org/10.3390/cryst12040485