Improving Mini-LED Pattern Quality by Using Distributed Bragg Reflector and Digital Twin Technology
Abstract
:1. Introduction
2. Digital Twin and Modeling
2.1. Model Architecture and Key Parameters
2.2. Modeling Flow
Algorithm 1: Algorithm to obtain fusion index. | |
1 | Function main_algorithn (initial model path) |
2 | { |
3 | Import LTAPI as lt |
4 | lt.open(“initial model path”); |
5 | set detector_size = 30; |
6 | set LED_number = N; |
7 | setimg as the detector data from lighttools modeling result; |
8 | for N = 5:1:12 |
9 | pitch = detector_size/(N − 1); |
10 | lt.set(pitch); |
11 | for DBR = [80 95] |
12 | lt.set(DBR); |
13 | lt.command(“run all ray tracing” ); |
14 | img = lt.command(“obtain detector data” ); |
15 | end |
16 | save(img) |
17 | img_f = FFT (img)//Fast Fourier Transform |
18 | fusion_index = fusion(img_f) |
19 | end |
20 | return fusion_index; |
21 | } |
22 | |
23 | Function fusion(image) |
24 | { |
25 | S = sum(image); |
26 | K = 1/S; |
27 | return K |
28 | } |
2.3. Fourier Spectrum Analysis and Fusion Index
3. Results
3.1. Single Chip
3.2. Results of Array Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.Z.; Chung, S.-R. High color gamut of perovskite QDs/PMMA-based white light-emitting diode. In Organic Light Emitting Materials and Devices XXII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10736, p. 107361G. [Google Scholar]
- Chen, S.W.H.; Huang, Y.M.; Chang, Y.H.; Lin, Y.; Liou, F.J.; Hsu, Y.C.; Song, J.; Choi, J.; Chow, C.W.; Lin, C.C.; et al. High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, K.; Liu, Z. Design and Fabrication of Fine-Pitch Pixelated-Addressed Micro-LED Arrays on Printed Circuit Board for Display and Communication Applications. IEEE J. Electron. Devices Soc. 2017, 5, 90–94. [Google Scholar] [CrossRef]
- Koma, N.; Tanase, K.; Yasukawa, K.; Watanabe, Y.; Karasawa, Y.; Tanaka, T.; Miyashita, S.; Atobe, M. P-75: Improved Optical Characteristics of a Front-Light System Using Fine-Pitch Patterned OLED. SID Symp. Dig. Tech. Pap. 2009, 40, 1399–1402. [Google Scholar] [CrossRef]
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Chen, S.-W.H.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- AU Optronics Corp. 2018. Available online: https://www.auo.com/en-global/New_Archive/detail/News_Archive_Technology_180522 (accessed on 29 March 2022).
- LEDinside, a Business Division of TrendForce Corp. 2018. Available online: https://www.ledinside.com/showreport/2018/5/display_week_2018_show_report_mini_led_backlight_business_opportunities_boost (accessed on 29 March 2022).
- Daly, S.; Kunkel, T.; Sun, X.; Farrell, S.; Crum, P. Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays. SID Symp. Dig. Tech. Pap. 2013, 44, 563–566. [Google Scholar] [CrossRef]
- Zhu, R.; Sarkar, A.; Emerton, N.; Large, T. 81-3: Reproducing High Dynamic Range Contents Adaptively based on Display Specifications. SID Symp. Dig. Tech. Pap. 2017, 48, 1188–1191. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, R.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Opt. Express 2017, 25, 1973–1984. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.X.; Ying, X.; Xiao-feng, P. Design and Simulation of Scattering Netted Dots on Light Guide Plate of Side-incident LED Backlight. J. Guangdong Univ. Technol. 2014, 31, 95–99. [Google Scholar]
- Huang, C.H.; Kang, C.Y.; Chang, S.H.; Lin, C.H.; Lin, C.Y.; Wu, T.; Sher, C.W.; Lin, C.C.; Lee, P.T.; Kuo, H.C. Ultra-high light extraction efficiency and ultra-thin mini-LED solution by freeform surface chip scale package array. Crystals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. Automatic detection of blurred images in UAV image sets. ISPRS J. Photogramm. Remote Sens. 2016, 122, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Narwaria, M.; Lin, W.; McLoughlin, I.V.; Emmanuel, S.; Chia, L.-T. Fourier transform based scalable image quality measure. IEEE Trans. Image Process. 2012, 21, 3364–3377. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Feng, J.-F.; Shi, Q.-Y. Texture feature based on local Fourier transform. In Proceedings of the 2001 International Conference on Image Processing (Cat. No.01CH37205), Thessaloniki, Greece, 7–10 October 2001; Volume 2, pp. 610–613. [Google Scholar]
- Sugawara, H.; Itaya, K.; Hatakoshi, G.I. Hybrid-type InGaAlP/GaAs distributed Bragg reflectors for InGaAlP light-emitting diodes. Jpn. J. Appl. Phys. 1994, 33, 6195–6198. [Google Scholar] [CrossRef]
- Chiou, S.W.; Lee, C.P.; Huang, C.K.; Chen, C.W. Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes. J. Appl. Phys. 2000, 87, 2052–2054. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Chen, K.J.; Wang, S.W.; Lin, C.C.; Wang, K.Y.; Li, J.R.; Lee, P.T.; Shih, M.H.; Li, X.; Chen, H.M.; et al. Improvement of light quality by DBR structure in white LED. Opt. Express 2015, 23, A27–A33. [Google Scholar] [CrossRef]
- Wang, D.X.; Ferguson, I.T.; Buck, J.A.; Nicol, D. Optical design and simulation for nanoscale Distributed Bragg Reflector (DBR) for high-brightness LED. In Nanoengineering: Fabrication, Properties, Optics, and Devices III; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6327, p. 63270Q. [Google Scholar]
- Jeong, T.; Lee, H.H.; Park, S.H.; Baek, J.H.; Lee, J.K. InGaN/AlGaN ultraviolet light-emitting diode with a Ti3O5/Al2O3 distributed Bragg reflector. Jpn. J. Appl. Phys. 2008, 47, 8811. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S.; Chen, F.; Qin, Z.; Liu, Z.; Luo, X. Freeform LED lens for rectangularly prescribed illumination. J. Opt. A Pure Appl. Opt. 2009, 11, 105501. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, K.-J.; Tsai, M.-T.; Shih, M.-H.; Sun, C.-W.; Lee, W.-I.; Lin, C.-C.; Kuo, H.C. High-efficiency and low assembly-dependent chip-scale package for white light-emitting diodes. J. Photon. Energy 2015, 5, 057606. [Google Scholar] [CrossRef]
- Schubert, M.F.; Xi, J.-Q.; Kim, J.K.; Schubert, E.F. Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material. Appl. Phys. Lett. 2007, 90, 141115. [Google Scholar] [CrossRef] [Green Version]
- Sangwine, S. Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron. Lett. 1996, 32, 1979–1980. [Google Scholar] [CrossRef]
- Hamilton, W.R. Elements of Quaternions; Longmans, Green, and Company: London, UK, 1866. [Google Scholar]
- Ell, T.A.; Sangwine, S. Hypercomplex Fourier Transforms of Color Images. IEEE Trans. Image Process. 2007, 16, 22–35. [Google Scholar] [CrossRef]
- Mario, A.B.; Alvarez-Borrego, J.; Acho, L. Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation. In 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications; International Society for Optics and Photonics: Bellongham, WA, USA, 2004; Volume 5622, pp. 760–765. [Google Scholar]
- He, J.; Zhang, Q.; Wang, J.; Zhou, J.; Liang, H. Investigation on quantitative uniformity evaluation for directional backlight auto-stereoscopic displays. Opt. Express 2018, 26, 9398–9408. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-S.; Wu, W.-Z.; Lay, Y.-L.; Chang, M.-W. A digital image-based measurement system for a LCD backlight module. Opt. Laser Technol. 2001, 33, 499–505. [Google Scholar] [CrossRef]
- Yoo, Y. Tutorial on Fourier Theory. 17 June 2001. Available online: http://www.cs.otago.ac.nz/cosc453/student_tutorials/fourier_analysis.pdf(accessed on 15 February 2022).
- Lim, J.S. Two-Dimensional Signal and Image Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
Parameter | Range |
---|---|
Reflectance of DBR | Without DBR: 0%; Snell’s law and Fresnel’s loss principle followed With DBR: 80%, 95%; BTDF file followed |
Indium gallium nitride (InGaN)-based chip array | Chip size: 1 mm × 1 mm Wavelength: 445 nm Pitch: 2.7–7.5 mm |
Optical distance | 1 mm |
Optical detector | Area: 30 mm × 30 mm Position: Center of the chip area at a height of 1 mm from the substrate. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-H.; Huang, C.-H.; Langpoklakpam, C.; James Singh, K.; Lin, C.-C.; Kuo, H.-C. Improving Mini-LED Pattern Quality by Using Distributed Bragg Reflector and Digital Twin Technology. Crystals 2022, 12, 529. https://doi.org/10.3390/cryst12040529
Chang S-H, Huang C-H, Langpoklakpam C, James Singh K, Lin C-C, Kuo H-C. Improving Mini-LED Pattern Quality by Using Distributed Bragg Reflector and Digital Twin Technology. Crystals. 2022; 12(4):529. https://doi.org/10.3390/cryst12040529
Chicago/Turabian StyleChang, Shu-Hsiu, Che-Hsuan Huang, Chatherine Langpoklakpam, Konthoujam James Singh, Chien-Chung Lin, and Hao-Chung Kuo. 2022. "Improving Mini-LED Pattern Quality by Using Distributed Bragg Reflector and Digital Twin Technology" Crystals 12, no. 4: 529. https://doi.org/10.3390/cryst12040529
APA StyleChang, S. -H., Huang, C. -H., Langpoklakpam, C., James Singh, K., Lin, C. -C., & Kuo, H. -C. (2022). Improving Mini-LED Pattern Quality by Using Distributed Bragg Reflector and Digital Twin Technology. Crystals, 12(4), 529. https://doi.org/10.3390/cryst12040529