Baloxavir Marboxil Polymorphs: Investigating the Influence of Molecule Packing on the Dissolution Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. BXM Polymorphs Preparation and Single Crystal Growth
2.2.2. Crystal Habit Observation
2.2.3. Powder X-ray Diffraction (PXRD)
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. Single-Crystal X-ray Diffraction (SCXRD)
2.2.7. Powder Dissolution Studies and Stability Tests
3. Results
3.1. Crystallization
3.1.1. Crystal Structure of Form I and II
3.1.2. PXRD
3.1.3. TGA-DSC
3.2. Dissolution Profile of Polymorph and Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heo, Y.A. Baloxavir: First Global Approval. Drugs 2018, 78, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Baxter, D. Evaluating the case for trivalent or quadrivalent influenza vaccines. Hum. Vaccines Immunother. 2016, 12, 2712–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiso, M.; Yamayoshi, S.; Murakami, J.; Kawaoka, Y. Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. J. Infect. Dis. 2020, 221, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- Noshi, T.; Kitano, M.; Taniguchi, K.; Yamamoto, A.; Omoto, S.; Baba, K.; Hashimoto, T.; Ishida, K.; Kushima, Y.; Hattori, K.; et al. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antivir. Res. 2018, 160, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Dufrasne, F. Baloxavir Marboxil: An Original New Drug against Influenza. Pharmaceuticals 2022, 15, 28. [Google Scholar] [CrossRef]
- Baloxavir Marboxil FDA Label. Available online: https://s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/002/079/original/Baloxavir_Marboxil_FDA_label.pdf?1543256133 (accessed on 16 May 2021).
- FDA Approves New Drug to Treat Influenza. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treat-influenza (accessed on 16 May 2021).
- Abraham, G.M.; Morton, J.B.; Saravolatz, L.D. Baloxavir: A Novel Antiviral Agent in the Treatment of Influenza. Clin. Infect. Dis. 2020, 71, 1790–1794. [Google Scholar] [CrossRef]
- Fujita, J. Introducing the new anti-influenza drug, baloxavir marboxil. Respir. Investig. 2020, 58, 1–3. [Google Scholar] [CrossRef]
- Taniguchi, K.; Ando, Y.; Nobori, H.; Toba, S.; Noshi, T.; Kobayashi, M.; Kawai, M.; Yoshida, R.; Sato, A.; Shishido, T.; et al. Inhibition of avian-origin influenza A(H7N9) virus by the novel cap-dependent endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2019, 9, 3466. [Google Scholar] [CrossRef] [Green Version]
- Takashita, E.; Ichikawa, M.; Morita, H.; Ogawa, R.; Fujisaki, S.; Shirakura, M.; Miura, H.; Nakamura, K.; Kishida, N.; Kuwahara, T.; et al. Human-to-Human Transmission of Influenza A(H3N2) Virus with Reduced Susceptibility to Baloxavir, Japan, February 2019. Emerg. Infect. Dis. 2019, 25, 2108–2111. [Google Scholar] [CrossRef] [Green Version]
- Kiso, M.; Yamayoshi, S.; Furusawa, Y.; Imai, M.; Kawaoka, Y. Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil. Viruses 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Parveen, S.; Alnoman, R.B.; Bayazeed, A.A.; Alqahtani, A.M. Computational Insights into the Drug Repurposing and Synergism of FDA-approved Influenza Drugs Binding with SARS-CoV-2 Protease against COVID-19. Am. J. Microbiol. Res. 2020, 8, 93–102. [Google Scholar]
- Kawai, M.; Tomita, K.; Akiyama, T.; Okano, A.; Miyagawa, M. Pharmaceutical Compositions Containing Substituted Polycyclic Pyridone Derivatives and Prodrug Thereof. U.S. Patent 10,759,814, 1 September 2020. [Google Scholar]
- Shibahara, S.; Fukui, N.; Maki, T. Method for Producing Substituted Polycyclic Pyridone Derivative and Crystal of Same. Patent WO2017221869, 28 December 2017. [Google Scholar]
- Kawai, M. Substituted Polycyclic Pyridone Derivatives and Prodrugs Thereof. U.S. Patent 10,392,406, 27 August 2019. [Google Scholar]
- Raw, A.S.; Furness, M.S.; Gill, D.S.; Adams, R.C.; Holcombe, F.O., Jr.; Yu, L.X. Regulatory considerations of pharmaceutical solid polymorphism in Abbreviated New Drug Applications (ANDAs). Adv. Drug Deliv. Rev. 2004, 56, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Bucar, D.K.; Lancaster, R.W.; Bernstein, J. Disappearing polymorphs revisited. Angew. Chem. Int. Ed. Engl. 2015, 54, 6972–6993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannigan, P.; Zeglinski, J.; Lusi, M.; O’Brien, J.; Hudson, S.P. Investigation into the Solid and Solution Properties of Known and Novel Polymorphs of the Antimicrobial Molecule Clofazimine. Cryst. Growth Des. 2016, 16, 7240–7250. [Google Scholar] [CrossRef]
- Censi, R.; Di Martino, P. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules 2015, 20, 18759–18776. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yin, X.H.; Diao, K.S. Improving the Solubility and Bioavailability of Pemafibrate via a New Polymorph Form II. ACS Omega 2020, 5, 26245–26252. [Google Scholar] [CrossRef] [PubMed]
- Prado, L.D.; Rocha, H.V.A.; Resende, J.A.L.C.; Ferreira, G.B.; Figuereido, T. An insight into carvedilol solid forms: Effect of supramolecular interactions on the dissolution profiles. CrystEngComm 2014, 16, 3168–3179. [Google Scholar] [CrossRef]
- Fandaruff, C.; Rauber, G.S.; Araya-Sibaja, A.M.; Pereira, R.N.; de Campos, C.E.M.; Rocha, H.V.A.; Monti, G.A.; Malaspina, T.; Silva, M.A.S.; Cuffini, S.L. Polymorphism of Anti-HIV Drug Efavirenz: Investigations on Thermodynamic and Dissolution Properties. Cryst. Growth Des. 2014, 14, 4968–4975. [Google Scholar] [CrossRef]
- Pudipeddi, M.; Serajuddin, A.T. Trends in solubility of polymorphs. J. Pharm. Sci. 2005, 94, 929–939. [Google Scholar] [CrossRef]
- Sathisaran, I.; Dalvi, S.V. Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Blagden, N.; Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: An Extraordinary Example of Conformational Polymorphism. Pharm. Res. 2001, 18, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev. 2004, 56, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Bruker AXS Inc. Bruker AXS announces novel APEX(TM) DUO, the most versatile system for small molecule X-ray crystallography. Anti-Corros. Methods Mater. 2007, 54, 375. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Impurities: Guideline For Residual Solvents Q3C(R5). Available online: http://www.pmda.go.jp/files/000156308.pdf (accessed on 17 July 1997).
- Bojarska, J.; Fruziński, A.; Sieroń, L.; Maniukiewicz, W. The first insight into the supramolecular structures of popular drug repaglinide: Focus on intermolecular interactions in antidiabetic agents. J. Mol. Struct. 2019, 1179, 411–420. [Google Scholar] [CrossRef]
- Qi, M.H.; Zhang, Q.D.; Liu, Y.; Ren, F.Z.; Ren, G.B. Four solid forms of filgotinib hydrochloride: Insight into the crystal structures, properties, stability, and solid-state transitions. J. Mol. Struct. 2019, 1178, 242–250. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–8. [Google Scholar] [CrossRef]
- Chu, K.R.; Lee, E.; Jeong, S.H.; Park, E.S. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch. Pharmacal Res. 2012, 35, 1187–1195. [Google Scholar] [CrossRef]
- Destri, L.G.; Marrazzo, A.; Rescifina, A.; Punzo, F. How molecular interactions affect crystal morphology: The case of haloperidol. J. Pharm. Sci. 2011, 100, 4896–4906. [Google Scholar] [CrossRef] [PubMed]
- Mishnev, A.; Stepanovs, D. Crystal Structure Explains Crystal Habit for the Antiviral Drug Rimantadine Hydrochloride. Z. Nat. B 2014, 69, 823–828. [Google Scholar] [CrossRef]
- Xu, T.; Jiang, Z.; He, M.; Gao, X.; He, Y. Effect of arrangement of functional groups on stability and gas adsorption properties in two regioisomeric copper bent diisophthalate frameworks. CrystEngComm 2019, 21, 4820–4827. [Google Scholar] [CrossRef]
- Modi, S.R.; Dantuluri, A.K.R.; Perumalla, S.R.; Sun, C.C.; Bansal, A.K. Effect of Crystal Habit on Intrinsic Dissolution Behavior of Celecoxib Due to Differential Wettability. Cryst. Growth Des. 2014, 14, 5283–5292. [Google Scholar] [CrossRef]
- Kumar, D.; Thipparaboina, R.; Shastri, N.R. Can vacuum morphologies predict solubility and intrinsic dissolution rate? A case study with felodipine polymorph form IV. J. Comput. Sci. 2015, 10, 178–185. [Google Scholar] [CrossRef]
- Chen, J.; Trout, B.L. Computer-Aided Solvent Selection for Improving the Morphology of Needle-like Crystals: A Case Study of 2,6-Dihydroxybenzoic Acid. Cryst. Growth Des. 2010, 10, 4379–4388. [Google Scholar] [CrossRef]
- Moreno-Calvo, E.; Calvet, T.; Cuevas-Diarte, M.A.; Aquilano, D. Relationship between the Crystal Structure and Morphology of Carboxylic Acid Polymorphs. Predicted and Experimental Morphologies. Cryst. Growth Des. 2010, 10, 4262–4271. [Google Scholar] [CrossRef]
- Jha, K.K.; Dutta, S.; Kumar, V.; Munshi, P. Isostructural polymorphs: Qualitative insights from energy frameworks. CrystEngComm 2016, 18, 8497–8505. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2015, 51, 3735–3738. [Google Scholar] [CrossRef] [PubMed]
Form I | Form II | |
---|---|---|
Empirical formula | C27H23F2N3O7S | C27H23F2N3O7S |
Formula weight | 571.54 | 571.54 |
Temperature (K) | 296 | 170 |
Crystal size (mm) | 0.50 × 0.46 × 0.16 | 0.35 × 0.08 × 0.06 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21 | P21 |
a (Å) | 7.1159 (3) | 7.1002 (14) |
b (Å) | 20.1967 (8) | 39.310 (7) |
c (Å) | 9.4878 (4) | 9.7808 (18) |
β (°) | 109.033 (1) | 110.966 (5) |
Volume (Å3) | 1289.02 (9) | 2549.2 (8) |
Z | 2 | 4 |
ρcalc g/cm3 | 1.473 | 1.489 |
µ (mm–1) | 0.193 | 0.20 |
F (000) | 592.0 | 1184 |
Reflections collected | 19,783 | 26,198 |
Independent reflections (Rint) | 5239 (0.023) | 10,025 (0.052) |
Data/restraints/parameters | 5239/121/400 | 10,025/1/723 |
R1, wR2 [I > 2_(I)] | 0.0285, 0.0732 | 0.06650.1608 |
R1, wR2 [all data] | 0.0293,0.0739 | 0.0717, 0.1637 |
Goodness-of-fit on F2 | 1.05 | 1.19 |
Largest diff. peak/hole/e Å−3 | 0.17, −0.18 | 0.40, −0.34 |
Flack parameter | 0.039 (18) | 0.04 (3) |
CCDC No. | 2088906 | 2088907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yu, K.; Liu, J.; Jin, Z.; Hu, X. Baloxavir Marboxil Polymorphs: Investigating the Influence of Molecule Packing on the Dissolution Behavior. Crystals 2022, 12, 550. https://doi.org/10.3390/cryst12040550
Zhou X, Yu K, Liu J, Jin Z, Hu X. Baloxavir Marboxil Polymorphs: Investigating the Influence of Molecule Packing on the Dissolution Behavior. Crystals. 2022; 12(4):550. https://doi.org/10.3390/cryst12040550
Chicago/Turabian StyleZhou, Xinbo, Kaxi Yu, Jiyong Liu, Zhiping Jin, and Xiurong Hu. 2022. "Baloxavir Marboxil Polymorphs: Investigating the Influence of Molecule Packing on the Dissolution Behavior" Crystals 12, no. 4: 550. https://doi.org/10.3390/cryst12040550
APA StyleZhou, X., Yu, K., Liu, J., Jin, Z., & Hu, X. (2022). Baloxavir Marboxil Polymorphs: Investigating the Influence of Molecule Packing on the Dissolution Behavior. Crystals, 12(4), 550. https://doi.org/10.3390/cryst12040550