Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Photonic Properties
2.2. Electronic Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beattie, N.S.; See, P.; Zoppi, G.; Ushasree, P.M.; Duchamp, M.; Farrer, I.; Ritchie, D.A.; Tomic, S. Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells. ACS Photonics 2017, 4, 2745–2750. [Google Scholar] [CrossRef]
- Ramiro, I.; Martí, A. Intermediate band solar cells: Present and future. Prog. Photovoltaics Res. Appl. 2020, 29, 705–713. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovoltaics Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Creti, A.; Tasco, V.; Montagna, G.; Tarantini, I.; Salhi, A.; Passaseo, A.; Lomascolo, M. Experimental Evidence of Complex Energy-Level Structuring in Quantum Dot Intermediate Band Solar Cells. ACS Appl. Nano Mater. 2020, 3, 8365–8371. [Google Scholar] [CrossRef]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, Z.M. Quantum Dot Solar Cells; Springer: New York, NY, USA, 2014. [Google Scholar]
- Soga, T. Nanostructured Materials for Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Martí, A.; Antolín, E.; Stanley, C.; Farmer, C.; López, N.; Díaz, P.; Cánovas, E.; Linares, P.; Luque, A. Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 2006, 97, 247701. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.; Adorno, S.; Bietti, S.; Acciarri, M.; Sanguinetti, S. eVidence of two-photon absorption in strain-free quantum dot GaAs/AlGaAs solar cells. Phys. Status Solidi RRL Rapid Res. Lett. 2013, 7, 173–176. [Google Scholar] [CrossRef]
- Tamaki, R.; Shoji, Y.; Okada, Y.; Miyano, K. Spectrally resolved interband and intraband transitions by two-step photon absorption in InGaAs/GaAs quantum dot solar cells. IEEE J. Photovoltaics 2014, 5, 229–233. [Google Scholar] [CrossRef]
- Nozawa, T.; Takagi, H.; Watanabe, K.; Arakawa, Y. Direct observation of two-step photon absorption in an InAs/GaAs single quantum dot for the operation of intermediate-band solar cells. Nano Lett. 2015, 15, 4483–4487. [Google Scholar] [CrossRef]
- Tomić, S.; Sogabe, T.; Okada, Y. In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell. Prog. Photovoltaics Res. Appl. 2015, 23, 546–558. [Google Scholar] [CrossRef]
- Willis, S.; Dimmock, J.; Tutu, F.; Liu, H.; Peinado, M.; Assender, H.; Watt, A.; Sellers, I. Defect mediated extraction in InAs/GaAs quantum dot solar cells. Sol. Energy Mater. Sol. Cells 2012, 102, 142–147. [Google Scholar] [CrossRef]
- Bailey, C.G.; Forbes, D.V.; Raffaelle, R.P.; Hubbard, S.M. Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 2011, 98, 163105. [Google Scholar] [CrossRef]
- Tanabe, K.; Guimard, D.; Bordel, D.; Arakawa, Y. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2012, 100, 193905. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Makableh, Y.; Vasan, R.; Manasreh, M.; Liang, B.; Reyner, C.; Huffaker, D. Strong interband transitions in InAs quantum dots solar cell. Appl. Phys. Lett. 2012, 100, 051907. [Google Scholar] [CrossRef]
- Hao, M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J.; Yuan, Y.; Zarrabi, N.; Cheng, N.; Ghasemi, M.; Chen, P.; et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1 − xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Kim, H.; Liang, J.; Woo, H.Y.; Kim, T.G.; Yan, H.; Shim, J.W. Indoor organic photovoltaics: Optimal cell design principles with synergistic parasitic resistance and optical modulation effect. Adv. Energy Mater. 2021, 11, 2003103. [Google Scholar] [CrossRef]
- Saeed, M.A.; Yoo, K.; Kang, H.C.; Shim, J.W.; Lee, J.J. Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dye. Pigment. 2021, 194, 109626. [Google Scholar] [CrossRef]
- Saeed, M.A.; Cheng, S.; Biswas, S.; Kim, S.H.; Kwon, S.K.; Kim, H.; Kim, Y.H.; Shim, J.W. Remarkably high performance of organic photovoltaic devices with 3, 9-bis (2-methylene-(3-(1, 1-dicyanomethylene)-indanone))-5, 5, 11, 11-tetrakis (4-hexyl meta-phenyl)-dithieno [2, 3-d: 2’, 3’-d’]-s-indaceno [1, 2-b: 5, 6-b’] dithiophene)-ethylhexyloxy] photoactive acceptor under halogen light illumination. J. Power Sources 2022, 518, 230782. [Google Scholar]
- Ramiro, I.; Martí, A.; Antolin, E.; Luque, A. Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovoltaics 2014, 4, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.G.; Forbes, D.V.; Polly, S.J.; Bittner, Z.S.; Dai, Y.; Mackos, C.; Raffaelle, R.P.; Hubbard, S.M. Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE J. Photovoltaics 2012, 2, 269–275. [Google Scholar] [CrossRef]
- Mellor, A.; Luque, A.; Tobías, I.; Martí, A. The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, S.; Seeds, A.; Liu, H. Quantum dot optoelectronic devices: Lasers, photodetectors and solar cells. J. Phys. Appl. Phys. 2015, 48, 363001. [Google Scholar] [CrossRef]
- Sablon, K.A.; Little, J.W.; Mitin, V.; Sergeev, A.; Vagidov, N.; Reinhardt, K. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett. 2011, 11, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Gioannini, M.; Cedola, A.P.; Di Santo, N.; Bertazzi, F.; Cappelluti, F. Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J. Photovoltaics 2013, 3, 1271–1278. [Google Scholar] [CrossRef]
- López, N.; Reichertz, L.; Yu, K.; Campman, K.; Walukiewicz, W. Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 2011, 106, 028701. [Google Scholar] [CrossRef]
- Popescu, V.; Bester, G.; Hanna, M.C.; Norman, A.G.; Zunger, A. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga) As/Ga (As, P) quantum dot solar cells. Phys. Rev. B 2008, 78, 205321. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Walukiewicz, W.; Ager III, J.; Bour, D.; Farshchi, R.; Dubon, O.; Li, S.; Sharp, I.; Haller, E. Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 2006, 88, 092110. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Mazzer, M.; Barnham, K. Efficiency enhancement of ideal photovoltaic solar cells by photonic excitations in multi-intermediate band structures. Appl. Phys. Lett. 2003, 83, 770–772. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; López, N.; Antolin, E.; Cánovas, E.; Stanley, C.; Farmer, C.; Caballero, L.; Cuadra, L.; Balenzategui, J. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Appl. Phys. Lett. 2005, 87, 083505. [Google Scholar] [CrossRef]
- Keevers, M.; Green, M. Efficiency improvements of silicon solar cells by the impurity photovoltaic effect. J. Appl. Phys. 1994, 75, 4022–4031. [Google Scholar] [CrossRef]
- Antolín, E.; Martí, A.; Luque, A. The lead salt quantum dot intermediate band solar cell. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 001907–001912. [Google Scholar]
- Linares, P.; Marti, A.; Antolin, E.; Luque, A. III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells. J. Appl. Phys. 2011, 109, 014313. [Google Scholar] [CrossRef]
- Eric, D.; Jiang, J.; Imran, A.; Zahid, M.N.; Khan, A.A. Optical properties of InN/GaN quantum dot superlattice by changing dot size and interdot spacing. Results Phys. 2019, 13, 102246. [Google Scholar] [CrossRef]
- Imran, A.; Jiang, J.; Eric, D.; Zahid, M.N.; Yousaf, M.; Ahmad, M.; Hassan, S.A. Efficiency enhancement through flat intermediate band in Quantum dot solar cell. Results Phys. 2018, 10, 241–247. [Google Scholar] [CrossRef]
- Aouami, A.E.; Bikerouin, M.; El-Yadri, M.; Feddi, E.; Dujardin, F.; Courel, M.; Chouchen, B.; Gazzah, M.; Belmabrouk, H. Internal polarization electric field effects on the efficiency of InN/InxGa1-xN multiple quantum dot solar cells. Sol. Energy 2020, 201, 339–347. [Google Scholar] [CrossRef]
- Aly, A.E.M.; Nasr, A. Theoretical study of one-intermediate band quantum dot solar cell. Int. J. Photoenergy 2014, 114311. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, X.; Yang, C.; Xiao, H.; Wang, C.; Yin, H.; Hou, Q.; Li, J.; Wang, Z.; Hou, X. Theoretical study on InxGa1 − xN/GaN quantum dots solar cell. Phys. B Condens. Matter 2011, 406, 73–76. [Google Scholar] [CrossRef]
- Shao, Q.; Balandin, A.; Fedoseyev, A.; Turowski, M. Intermediate-band solar cells based on quantum dot supracrystals. Appl. Phys. Lett. 2007, 91, 163503. [Google Scholar] [CrossRef] [Green Version]
- Steven, E.J. Quantum Dot Intermediate Band Solar Cells: Design Criteria and Optimal Materials. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2012. [Google Scholar]
- Martí, A.; Cuadra, L.; Luque, A. Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans. Electron Devices 2001, 48, 2394–2399. [Google Scholar] [CrossRef]
- Aouami, A.E.; Pérez, L.M.; Feddi, K.; El-Yadri, M.; Dujardin, F.; Suazo, M.J.; Laroze, D.; Courel, M.; Feddi, E.M. Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1- xN Quantum Dot Solar Cells. Nanomaterials 2021, 11, 1317. [Google Scholar] [CrossRef]
- Schwarzl, T.; Kaufmann, E.; Springholz, G.; Koike, K.; Hotei, T.; Yano, M.; Heiss, W. Temperature-dependent midinfrared photoluminescence of epitaxial PbTe/CdTe quantum dots and calculation of the corresponding transition energy. Phys. Rev. B 2008, 78, 165320. [Google Scholar] [CrossRef]
- Aouami, A.E.; Feddi, K.; El Haouari, M.; El Yadri, M.; Afkir, N.B.; Zazoui, M.; Feddi, E.; Duque, C.; Dujardin, F. Impact of heavy hole levels on the photovoltaic conversion efficiency of InxGa1- xN/InN quantum dot intermediate band solar cells. Superlattices Microstruct. 2019, 129, 202–211. [Google Scholar] [CrossRef]
- Martinez, G.; Schlüter, M.; Cohen, M.L. Electronic structure of PbSe and PbTe. I. Band structures, densities of states, and effective masses. Phys. Rev. B 1975, 11, 651. [Google Scholar] [CrossRef] [Green Version]
- Zemel, J.N.; Jensen, J.D.; Schoolar, R.B. Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys. Rev. 1965, 140, A330. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
Materials | (eV) | ||
---|---|---|---|
PbTe | 0.051 | 0.053 | 0.32 |
CdTe | 0.09 | 0.82 | 1.6 |
PbSe | 0.048 | 0.042 | 0.28 |
ZnTe | 0.117 | 0.67 | 2.26 |
InN | 0.004 | 1.63 | 0.7 |
GaN | 0.21 | 1.4 | 3.38 |
System Materials | L | H | E | E | E | J | V | V | J | FF | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(nm) | (nm) | (eV) | (eV) | (eV) | (eV) | (eV) | (mA/cm) | (V) | (V) | (mA/cm) | (%) | (%) | |
PbTe/CdTe | 3.7 | 2.4 | 0.04 | 0.010 | 1.56 | 1.07 | 0.47 | 63.26 | 1.58 | 1.46 | 60.92 | 90.23 | 56.97 |
PbSe/ZnTe | 3 | 1.8 | 0.05 | 0.02 | 2.18 | 1.37 | 0.75 | 47.71 | 2.16 | 2.02 | 46.96 | 91.69 | 59.78 |
InN/GaN | 3.4 | 1.3 | 0.08 | 2.57 | 1.55 | 0.93 | 39.87 | 2.53 | 2.35 | 39.29 | 91.57 | 58.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, L.M.; Aouami, A.E.; Feddi, K.; Tasco, V.; Abdellah, A.B.; Dujardin, F.; Courel, M.; Riquelme, J.A.; Laroze, D.; Feddi, E.M. Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots. Crystals 2022, 12, 1002. https://doi.org/10.3390/cryst12071002
Pérez LM, Aouami AE, Feddi K, Tasco V, Abdellah AB, Dujardin F, Courel M, Riquelme JA, Laroze D, Feddi EM. Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots. Crystals. 2022; 12(7):1002. https://doi.org/10.3390/cryst12071002
Chicago/Turabian StylePérez, Laura M., Asmae EL Aouami, Kawtar Feddi, Vittorianna Tasco, Abdellatif Ben Abdellah, Francis Dujardin, Maykel Courel, Javier A. Riquelme, David Laroze, and EL Mustapha Feddi. 2022. "Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots" Crystals 12, no. 7: 1002. https://doi.org/10.3390/cryst12071002
APA StylePérez, L. M., Aouami, A. E., Feddi, K., Tasco, V., Abdellah, A. B., Dujardin, F., Courel, M., Riquelme, J. A., Laroze, D., & Feddi, E. M. (2022). Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots. Crystals, 12(7), 1002. https://doi.org/10.3390/cryst12071002