Electrically Conductive Fused Deposition Modeling Filaments: Current Status and Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching for Articles and Commercially Available Conductive Filaments
2.2. 3D Printing of Conductive Filaments
2.2.1. Printing Materials, Printing Settings, and Printer
2.2.2. 3D Models
2.2.3. Measured Resistance Values of the Printed Samples
3. Results
3.1. Printed Samples of the Selected Conductive Filaments and Their Measured Resistances
3.2. Medical Applications Articles which Used Conductive Filaments
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused deposition modeling: Process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Direct Drive, vs. Bowden Extruder: The Differences. Available online: https://all3dp.com/2/direct-vs-bowden-extruder-technology-shootout/#:~:text=In%20a%20direct%20drive%20system,to%20reach%20the%20hot%20end (accessed on 30 August 2021).
- The Ultimate Filament Guide—The Best 3D Printer Filament: The Types in 2022. Available online: https://all3dp.com/1/3d-printer-filament-types-3d-printing-3d-filament/ (accessed on 11 April 2022).
- Better Than Metal—High-Performance 3D Printing Materials: The Ultimate Guide. Available online: https://all3dp.com/1/high-performance-3d-printing-materials-the-ultimate-guide/ (accessed on 10 March 2022).
- Zheng, Y.; Huang, X.; Chen, J.; Wu, K.; Wang, J.; Zhang, X. A review of conductive carbon materials for 3D printing: Materials, technologies, properties, and applications. Materials 2021, 14, 3911. [Google Scholar] [CrossRef]
- Proto-Pasta Electrically Conductive Composite—Conductive 3D Printer PLA Filament. Available online: https://www.proto-pasta.com/products/conductive-pla?variant=1265211476 (accessed on 24 October 2021).
- Graphene 3D Lab—BlackMagic Conductive Graphene PLA Filament. Available online: https://filament2print.com/gb/graphene/653-conductive-graphene.html (accessed on 25 October 2021).
- Palmiga PI-ETPU 95-250 Carbon Black—Electrically Conductive TPU Filament with Shore Hardness 95A. Available online: https://www.creativetools.se/hardware/3d-printers-and-accessories/filaments/flexible-filaments/pi-etpu-95-250-carbon-black (accessed on 25 October 2021).
- Recreus Conductive Filaflex—Electrically Conductive TPU Filament with Shore Hardness 92A. Available online: https://recreus.com/gb/filaments/3-21-filaflex-conductivo.html#/1-colour-black/2-diameter-175_mm/3-weight-500_gr (accessed on 10 November 2021).
- Multi3D Electrifi Conductive Filament. Available online: https://www.multi3dllc.com/product/electrifi/ (accessed on 26 October 2021).
- AMOLEN Conductive Black PLA Filament. Available online: https://amolen.com/products/amolen-3d-printer-filament-conductive-black-pla-filament-500g1-1lb (accessed on 26 October 2021).
- Filoalfa Alfaohm Conductive PLA Filament. Available online: https://www.filoalfa3d.com/gb/special/171-292-alfaohm-8050327032354.html (accessed on 26 October 2021).
- 3dkonductive—Electroconductive PLA Filament. Available online: https://3dk.berlin/en/special/169-3dkonductive.html (accessed on 26 October 2021).
- Sunlu ABS Conductive Filament. Available online: https://www.aliexpress.com/i/33059583678.html (accessed on 26 October 2021).
- NinjaTek EEL Electrically Conductive TPU Filament with Shore Hardness 90A. Available online: https://ninjatek.com/shop/eel/ (accessed on 26 October 2021).
- AddNorth Koltron G1 Graphene Electrically and Thermally Conductive PVDF Filament. Available online: https://filament2print.com/gb/graphene/1175-koltron-g1.html (accessed on 10 November 2021).
- Graphene 3D Lab—BlackMagic Conductive Flexible TPU Filament with Shore Hardness 90A. Available online: https://filament2print.com/gb/graphene/785-graphene-conductivo-flexible-tpu.html (accessed on 18 November 2021).
- Qidi Tech. X-Plus 3D Printer. Available online: http://www.qd3dprinter.com/products/x-plus/ (accessed on 30 August 2021).
- Qidi Print 6.2.1. Available online: http://www.qd3dprinter.com/software/ (accessed on 2 June 2022).
- Autodesk Tinkercad. Available online: https://www.tinkercad.com/ (accessed on 3 May 2022).
- GVDA—True RMS Digital Multimeter Auto Range. Available online: https://www.gvda-instrument.com/electronic-instruments/digital-multimeter/true-rms-digital-multimeter-auto-range.html (accessed on 3 April 2022).
- Espadinha, C.T. Integration of 3D Printed Sensors into Orthotic Devices. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2020. Available online: http://hdl.handle.net/10451/45363 (accessed on 1 December 2021).
- Rocha, D.P.; Squissato, A.L.; da Silva, S.M.; Richter, E.M.; Munoz, R.A.A. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta 2020, 335, 1–11. [Google Scholar] [CrossRef]
- Steckiewicz, A.; Konopka, K.; Choroszucho, A.; Stankiewicz, J.M. Temperature Measurement at Curved Surfaces Using 3D Printed Planar Resistance Temperature Detectors. Electronics 2021, 10, 1100. [Google Scholar] [CrossRef]
- Savazzi, M.; Abedi, S.; Ištuk, N.; Joachimowicz, N.; Roussel, H.; Porter, E.; O’Halloran, M.; Costa, J.R.; Fernandes, C.A.; Felício, J.M.; et al. Development of an Anthropomorphic Phantom of the Axillary Region for Micro-wave Imaging Assessment. Sensors 2020, 20, 4968. [Google Scholar] [CrossRef]
- Greenspan, B.; Danielescu, A. Designing Low-Cost Sports Prosthetics with Advanced 3D Printing Techniques. In Proceedings of the Adjunct Publication of the 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual Event, 20–23 October 2020; pp. 126–128. [Google Scholar] [CrossRef]
- Dijkshoorn, A.; Werkman, P.; Welleweerd, M.; Wolterink, G.; Eijking, B.; Delamare, J.; Sanders, R.; Krijnen, G.J.M. Embedded sensing: Integrating sensors in 3-D printed structures. J. Sens. Sens. Syst. 2018, 7, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Hnat, A.T. Characterization of Impedance Properties of A Conductive Electrospun Polymer Biopotential Electrode with Porous Fiber Arrays. Ph.D. Thesis, San Diego State University, San Diego, CA, USA, 2019. Available online: https://ui.adsabs.harvard.edu/abs/2019MsT.........34H (accessed on 1 October 2021).
- Martins, G.; Gogola, J.L.; Budni, L.H.; Janegitz, B.C.; Marcolino, L.H.; Bergamini, M.F. 3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal. Chim. Acta 2021, 1147, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Munasinghe, N.; Woods, M.; Miles, L.; Paul, G. 3-D Printed Strain Sensor for Structural Health Monitoring. In Proceedings of the 2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Bangkok, Thailand, 18–20 November 2019; pp. 275–280. [Google Scholar] [CrossRef]
- Elgeneidy, K.; Neumann, G.; Jackson, M.; Lohse, N. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators. Front. Robot. AI Commun. 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Chua, B. Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump. Sens. Actuators B Chem. 2018, 258, 1080–1089. [Google Scholar] [CrossRef]
- Götzelmann, T. Visually Augmented Audio-Tactile Graphics for Visually Impaired People. ACM Trans. Access. Comput. 2018, 11, 1–31. [Google Scholar] [CrossRef]
- Stopforth, R. Conductive 3D printed material used for medical electrodes. In Proceedings of the RAPDASA Conference, Stellenbosch, South Africa, 4–6 November 2020; pp. 173–180. Available online: https://site.rapdasa.org/wp-content/uploads/2021/02/13-Conductive-3D-printed-material-used-for-medical-electrodes.pdf (accessed on 1 October 2021).
- Sun, Z.M.; Velasquez-Garcia, L.F. Monolithic FFF-Printed, Biocompatible, Biodegradable, Dielectric-Conductive Microsystems. J. Microelectromech. Syst. 2017, 26, 1356–1370. [Google Scholar] [CrossRef]
- Hamzah, H.H.; Keattch, O.; Yeoman, M.S.; Covill, D.; Patel, B.A. 3D Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction. Anal. Chem. 2019, 91, 12014–12020. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.; Krishnan, S. ECG Dry-electrode 3D Printing and Signal Quality Considerations. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Event, 1–5 November 2021; pp. 6855–6858. [Google Scholar] [CrossRef]
- Su, W.C.; Chen, Y.; Xi, J. A new approach to estimate ultrafine particle respiratory deposition. Inhal. Toxicol. Int. Forum Respir. Res. 2019, 31, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Su, W.C.; Chen, Y.; Shang, Y.; Dong, J.; Tu, J.; Tian, L. A combined computational and experimental study on nanoparticle transport and partitioning in the human trachea and upper bronchial airways. Aerosol Air Qual. Res. 2020, 20, 2404–2418. [Google Scholar] [CrossRef]
- Su, W.C.; Wong, S.W.; Buu, A. Deposition of E-cigarette aerosol in human airways through passive vaping. Indoor Air 2021, 31, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Su, W.C.; Chen, Y.; Bezerra, M.; Wang, J. Respiratory deposition of ultrafine welding fume particles. J. Occup. Environ. Hyg. 2019, 16, 694–706. [Google Scholar] [CrossRef]
- Ry, E.V. Creating 3D-Artefacts for Spoofing Fingerprint Readers. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2502570/19971_FULLTEXT.pdf?sequence=1 (accessed on 1 October 2021).
- Martins, R.A.; Felicio, J.M.; Costa, J.R.; Fernandes, C.A. Comparison of Slot-Based and Vivaldi Antennas for Breast Tumor Detection Using Machine Learning and Microwave Imaging Algorithms. In Proceedings of the 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021. [Google Scholar] [CrossRef]
- Brule, E.; Bailly, G.; Brock, A.; Valentin, F.; Denis, G.; Jouffrais, C. MapSense: Multi-sensory interactive maps for children living with visual impairments. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 445–457. [Google Scholar] [CrossRef]
- Lin, A. Patient-specific Endovascular Aortic Repair (EVAR). Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- Al-Rubaiai, M.; Pinto, T.; Qian, C.; Tan, X. Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material. Soft Robot. 2019, 6, 318–332. [Google Scholar] [CrossRef]
- Shao, J.; Li, K.H.H.; Son, A.; Chua, B. A self-powered insulin patch pump with a superabsorbent polymer as a biodegradable battery substitute. J. Mater. Chem. B 2020, 8, 4210–4220. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.; Spaan, C.; Kosmas, D.; Sanders, R.; Krijnen, G. 3D printed capacitive shear and normal force sensor using a highly flexible dielectric. In Proceedings of the 2021 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 23–25 August 2021. [Google Scholar] [CrossRef]
- Christopher, K.; Chauhan, A. Delivery of ionic molecules to anterior chamber by iontophoretic contact lenses. Eur. J. Pharm. Biopharm. 2019, 140, 40–49. [Google Scholar] [CrossRef]
- Jayapiriya, U.S.; Goel, S. Surface modified 3D printed carbon bioelectrodes for glucose/O2 enzymatic biofuel cell: Comparison and optimization. Sustain. Energy Technol. Assessments 2020, 42, 100811. [Google Scholar] [CrossRef]
- Katseli, V.; Angelopoulou, M.; Kokkinos, C. 3d printed bioelectronic microwells. Adv. Funct. Mater. 2021, 31, 2102459. [Google Scholar] [CrossRef]
- Ragazou, K.; Lougkovois, R.; Katseli, V.; Kokkinos, C. Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine. Sensors 2021, 21, 4753. [Google Scholar] [CrossRef]
- Faenger, B.; Ley, S.; Helbig, M.; Sachs, J.; Hilger, I. Breast phantom with a conductive skin layer and conductive 3D-printed anatomical structures for microwave imaging. In Proceedings of the 11th European Conference on Antennas and Propagation (EuCAP), Paris, France, 19–24 March 2017. [Google Scholar] [CrossRef]
- Elbardisy, H.M.; Richter, E.M.; Crapnell, R.D.; Down, M.P.; Gough, P.G.; Belal, T.S.; Talaat, W.; Daabees, H.G.; Banks, C.E. Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography-amperometric analysis: Application to the detection and quantification of new psychoactive substances (NBOMes). Anal. Methods 2020, 12, 2152–2165. [Google Scholar] [CrossRef]
- Honnorat, B. Application of Cold Plasma in Oncology, Multidisciplinary Experiments, Physical, Chemical and Biological Modeling. Ph.D. Thesis, Sorbonne Université, Paris, France, 2018. Available online: https://tel.archives-ouvertes.fr/tel-02049392/file/2018SORUS014.pdf (accessed on 1 October 2021).
- Foster, M.; Beppler, E.; Holder, T.; Dieffenderfer, J.; Erb, P.; Everette, K.; Gruen, M.; Somers, T.; Evans, T.; Daniele, M.; et al. A system for assessment of canine-human interaction during animal-assisted therapies. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar] [CrossRef]
- Ng, S.; Zazpe, R.; Rodriguez-Pereira, J.; Michalička, J.; Macak, J.M.; Pumera, M. Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. J. Mater. Chem. A 2021, 9, 11405–11414. [Google Scholar] [CrossRef]
- Adams, A. 3D Printed Glucose Monitoring Sensor. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2017. [Google Scholar]
- Rewatkar, P.; Goel, S. Next-Generation 3D Printed Microfluidic Membraneless Enzymatic Biofuel Cell: Cost-Effective and Rapid Approach. IEEE Trans. Electron. Devices 2019, 66, 3628–3635. [Google Scholar] [CrossRef]
- Puneeth, S.B.; Puranam, S.A.; Goel, S. 3-D printed integrated and automated electro-microfluidic viscometer for biochemical applications. IEEE Trans. Instrum. Meas. 2018, 68, 2648–2655. [Google Scholar] [CrossRef]
- Uz, M.; Donta, M.; Mededovic, M.; Sakaguchi, D.; Mallapragada, S. Development of Gelatin and Graphene-Based Nerve Regeneration Conduits Using 3D Printing Strategies for Electrical Transdifferentiation of Mesenchymal Stem Cells. Ind. Eng. Chem. Res. 2019, 58, 7421–7427. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.H.; Lin, C.H. Novel paper-based microfluidic cassette for 2D paper chromatography and paper spray mass spectrometry (PS-MS) for drug metabolism analysis in urine. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, Ireland, 21–25 January 2018. [Google Scholar] [CrossRef]
- Wolterink, G.; Sanders, R.; Muijzer, F.; van Beijnum, B.J.; Krijnen, G. 3D-printing soft sEMG sensing structures. In Proceedings of the 16th IEEE Sensors Conference, Glasgow, UK, 29 October–1 November 2017. [Google Scholar] [CrossRef] [Green Version]
- Wolterink, G.J.W.; Sanders, R.G.P.; Krijnen, G. Thin, Flexible, Capacitive Force Sensors Based on Anisotropy in 3D-Printed Structures. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Tawk, C.; Mutlu, R.; Sariyildiz, E.; Alici, G. A 3D Printed Soft Robotic Monolithic Unit for Haptic Feedback Devices. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 388–393. [Google Scholar] [CrossRef]
- Wolterink, G.; Dias, P.; Sanders, R.G.P.; Muijzer, F.; Van Beijnum, B.-J.; Veltink, P.; Krijnen, G. Development of Soft sEMG Sensing Structures Using 3D-Printing Technologies. Sensors 2020, 20, 4292. [Google Scholar] [CrossRef]
- Perez Lorea, E.A. 3D Printed Sensor to Detect Muscle Contraction by Means of Force Myography. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2017. [Google Scholar]
- Eijking, B.; Sanders, R.; Krijnen, G. Development of whisker inspired 3D multi-material printed flexible tactile sensors. In Proceedings of the 2017 IEEE Sensors, Paris, France, 21–25 May 2017; pp. 1–3. [Google Scholar]
- Darnis, M. Integrating Sensors in Components Using Additive Manufacturing. Master’s Thesis, Esslingen University of Applied Sciences, Esslingen, Germany, 2016. [Google Scholar]
- Nachtigall, T.; Tomico, O.; Wakkary, R.; Van Dongen, P. Encoding materials and data for iterative personalization. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Tan, X.; He, L.; Cao, J.; Chen, W.; Nanayakkara, T. A soft pressure sensor skin for hand and wrist orthoses. IEEE Robot. Autom. Lett. 2020, 5, 2192–2199. [Google Scholar] [CrossRef]
- Loh, L.Y.W.; Gupta, U.; Wang, Y.; Foo, C.C.; Zhu, J.; Lu, W.F. 3D printed metamaterial capacitive sensing array for universal jamming gripper and human joint wearables. Adv. Eng. Mater. 2021, 23, 2001082. [Google Scholar] [CrossRef]
- Rodrigez, D.F.G. 3D Printed Flexible Materials for Electroactive Polymer Structures, Soft Actuators, and Flexible Sensors. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2020. [Google Scholar]
- Gandler, M.; Eibensteiner, F.; Langer, J. 3D Printable Sensors for Smart Textiles. In Proceedings of the International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 25–27 June 2019; pp. 153–157. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Chen, X.; Wang, Z.; Li, Y.; Liu, Y. A proprioceptive bellows (PB) actuator with position feedback and force estimation. IEEE Robot. Autom. Lett. 2020, 5, 1867–1874. [Google Scholar] [CrossRef]
- Langlois, K.; Roels, E.; Van De Velde, G.; Espadinha, C.; Van Vlerken, C.; Verstraten, T.; Vanderborght, B.; Lefeber, D. Integration of 3d Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. Sensors 2021, 21, 2157. [Google Scholar] [CrossRef] [PubMed]
- Wolterink, G.; Kosmas, D.; Schouten, M.; Van Beijnum, B.J.; Veltink, P.; Krijnen, G. Evaluation of A 3D Printed Soft Sensor for Measuring Fingertip Interaction Forces. IEEE Sens. J. 2022, 22, 11499–11508. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y. Innovative design of embedded pressure and position sensors for soft actuators. IEEE Robot. Auto. Lett. 2018, 3, 656–663. [Google Scholar] [CrossRef]
- Schouten, M.; Sanders, R.; Krijnen, G. 3D printed flexible capacitive force sensor with a simple micro-controller based readout. In Proceedings of the 16th IEEE Sensors Conference, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wolterink, G.; Umrani, A.; Schouten, M.; Sanders, R.; Krijnen, G. 3D-printed calorimetric flow sensor. In Proceedings of the 2020 IEEE Sensors, Rotterdam, Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wolterink, G.; Sanders, R.; van Beijnum, B.J.; Veltink, P.; Krijnen, G. A 3D-Printed Soft Fingertip Sensor for Providing Information about Normal and Shear Components of Interaction Forces. Sensors 2021, 21, 4271. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Kim, W.S. Toward a smart compliant robotic gripper equipped with 3D-designed cellular fingers. Adv. Intell. Syst. 2019, 1, 1900019. [Google Scholar] [CrossRef] [Green Version]
- Ntagios, M.; Escobedo, P.; Dahiya, R. 3D printed robotic hand with embedded touch sensors. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 16–19 August 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Li, S. 3D-Printed Conformal Antennas for Wearable Hyperthermia Device. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2019. [Google Scholar]
- Kim, T.-H.; Vanloo, J.; Kim, W.S. 3D Origami Sensing Robots for Cooperative Healthcare Monitoring. Adv. Mater. Technol. 2021, 6, 2000938. [Google Scholar] [CrossRef]
- Flashforge Creator Pro. Available online: https://www.flashforge.com/product-detail/flashforge-creator-pro-3d-printer (accessed on 26 October 2021).
- Ultimaker 3. Available online: https://ultimaker.com/3d-printers/ultimaker-3 (accessed on 10 June 2022).
Filament | Material | Resistivity Ω.cm |
---|---|---|
Proto-Pasta [7] | PLA doped with carbon black | (x/y): 30 Ω.cm(z): 115 Ω.cm |
Black Magic Graphene [8] | PLA doped with graphene | 0.9 Ω.cm |
Palmiga PI-ETPU 95-250 [9] | TPU doped with carbon black | Less than 800 Ω.cm |
Conductive Filaflex [10] | TPU and doping information could not be found | 3.9 Ω.cm |
Multi3D Electrifi [11] | Metal-Polymer composite consists of biodegradable polyester doped with cooper | 0.006 Ω.cm |
Amolen [12] | PLA and doping information could not be found | 1.5 Ω.cm |
Filoalfa Alfaohm [13] | PLA doped with carbon nanotubes | (x/y): 15 Ω.cm(z): 20 Ω.cm |
3dkonductive [14] | PLA doped with carbon black | (x/y): 23 Ω.cm(z): 53 Ω.cm |
Sunlu ABS [15] | ABS and doping information could not be found | 103 to 105 Ω.cm |
NinjaTek Eel [16] | TPU doped with carbon black | 1.5 × 103 Ω.cm |
Koltron G1 [17] | PVDF doped with aros graphene | 2.0 Ω.cm |
BlackMagic Flexible TPU [18] | TPU doped with graphene | Less than 1.25 Ω.cm |
Filament | Nozzle Temperature | Printing Speed in | Build Plate Temperature |
---|---|---|---|
Proto-Pasta | 206 °C | 45 mm/s | 60 °C |
Palmiga PI-ETPU 95-250 | 220 °C | 30 mm/s | 60 °C |
Multi3D Electrifi | 160 °C | 15 mm/s | 0 °C |
Conductive Filaflex | 250 °C | 30 mm/s | 60 °C |
Filoalfa Alfaohm | 220 °C | 20 mm/s | 50 °C |
3dkonductive | 220 °C | 60 mm/s | 60 °C |
Amolen | 220 °C | 45 mm/s | 50 °C |
Sunlu ABS | 240 °C | 50 mm/s | 110 °C |
Filament | Measured Resistance in kΩ | ||
---|---|---|---|
Sample1 (Square) | Sample2 (Cylinder) | Sample3 (Long) | |
Proto-Pasta | ~0.7 | ~1 | ~1.3 |
Palmiga PI-ETPU 95-250 | ~2 | ~6 | ~7 |
Multi3D Electrifi | ~0.05 | NA | NA |
Conductive Filaflex | ~0.5 | ~1 | ~1.5 |
Filoalfa Alfaohm | ~0.4 | ~0.6 | ~1 |
3dkonductive | ~20 | ~25 | ~60 |
Amolen | ~6 | ~13 | ~50 |
Sunlu ABS | ~700 | ~3000 | ~4000 |
Specific Application | Filament | Printer | Reference |
---|---|---|---|
EMG sensor | Proto-Pasta | Ultimaker 3 *** | [23] |
Electrochemical detection of metals in biological samples using 3D printed electrode | Graber i3 RepRap | [24] | |
Planar resistance temperature sensor | Ultimaker 3 *** | [25] | |
Anthropomorphic phantom of the axillary region—bone structure | Ultimaker 3 *** | [26] | |
Integrated strain sensor inside a 3D printed coil spring—low cost basketball 3D printed prosthetic hand with haptic feedback | Ultimaker S5 | [27] | |
Integrated strain gauge piezoresistive sensor | Not mentioned | [28] | |
Semi-wet spiked biopotential electrode with gel-filled conductive polymer cap | FlashForge Creator Pro | [29] | |
Electrochemical immunosensors for virus detection electrode and its application to detect Hantavirus Araucaria nucleoprotein (Np) | Graber i3 RepRap | [30] | |
Strain sensor for structural health monitoring | Prusa i3 MK3 | [31] | |
Flexible resistive strain sensor for bending and contact feedback integrated into soft actuators and robotics | LulzBot TAZ 5 *** | [32] | |
Dose monitoring in a syringe-less wearable infusion pump | M3D Micro | [33] | |
Visually augmented audio-tactile graphical map with integrated capacitive codes | Felixprinters Felix Pro 1 | [34] | |
Medical electrodes—ECG and TENS | Anet A8 | [35] | |
Biocompatible, biodegradable, dielectric-conductive microsystems—resistors, capacitors, inductors, cantilevers, and electrohydrodynamic liquid ionizers | MAKEiT PRO-M | [36] | |
Electrochemical sensor for simultaneous dual monitoring of serotonin overflow and circular muscle contraction | Wanhao duplicator 4 | [37] | |
Single-lead ECG dry electrodes and heart rate estimation for short term wireless ECG monitoring | Anycubic i3 Mega S | [38] | |
Human lung airways physical replicas | LulzBot TAZ 6 *** | [39,40,41,42] | |
Creating 3D printed fingerprint artefacts | Prusa i3 MK2 *** | [43] | |
Breast tumor phantom | Ultimaker 3 Extended *** | [44] | |
A multi-sensory interactive map for visually impaired children | Not mentioned | [45] | |
Patient-specific endovascular aortic repair (EVAR) stent-graft | DIYElectronics Prusa i3 | [46] | |
Stiffness control and shape modulation of soft actuators and its potential in soft robotics | QIDI Tech I | [47] | |
Dose monitoring of a self-powered insulin patch pump | Micro M3D | [48] | |
Capacitive shear and normal force sensor using a highly flexible dielectric | Diabase H-Series *** | [49] | |
Contact lens with two spatially separated 3D printed electrodes used to enhance ophthalmic drug delivery via iontophoresis | Not mentioned | [50] | |
Multi-functional bioelectrodes for several advanced electrochemical devices, including glucose/O2 enzymatic biofuel cells | Proto-Pasta + Amolen | Flashforge Creator Pro | [51] |
Integrated all 3D printed electrochemical microtitration wells (e-wells) for direct quantum dot-based (QDs) and enzymatic bioassays | Proto-Pasta + 3DEdge ABS ** | Flashforge Creator Pro | [52] |
On-field determination of Antipsychotic Drug Quetiapine fumarate (QF) via voltammetric mode | Flashforge Creator Pro | [53] | |
Breast Phantom for microwave imaging | Proto-Pasta + 3D-Prima conductive ABS ** | Not mentioned | [54] |
Wall-Jet flow cell for high performance liquid chromatography-amperometric analysis: application to the detection and quantification of new psychoactive substances (NBOMes) | Proto-Pasta + BlackMagic Graphene **** | ZMorph VX | [55] |
Application of cold plasma in oncology—high voltage electrode of a dielectric barrier discharge single-channel plasma jet | Leapfrog Creatr HS | [56] | |
Custom ECG Electrodes to monitor human and canine heart rate during animal-assisted therapy | BlackMagic Graphene **** | Lulzbot Mini *** | [57] |
Nanocarbon/Polylactic acid electrode—photoelectrocatalytic hydrogen evolution reaction | Prusa i3 MK3 | [58] | |
Glucose monitoring sensor | MakerBot *** | [59] | |
Microfluidic membrane-less enzymatic biofuel cell | CreatBot D600 Pro | [60] | |
Integrated and automated electro-microfluidic viscometer that mimics Ostwald viscometer | FlashForge Creator Pro | [61] | |
Gelatin solution and graphene-based interdigitated circuit nerve regeneration conduits for electrical transdifferentiation of mesenchymal stem cells | LulzBot TAZ 6 *** | [62] | |
Paper-based microfluidic cassette for 2D paper chromatography and paper spray mass spectrometry for drug metabolism analysis in urine | Ultimaker 3 Extended *** | [63] | |
Soft surface EMG sensing structures | BlackMagic Flexible TPU **** | Flashforge Creator Pro * | [64] |
Thin and flexible capacitive force sensor based on anisotropy that could be implemented on biomedical and soft robotic applications | Palmiga PI-ETPU 95-250 | Flashforge Creator Pro * | [65] |
Soft robotic monolithic unit for haptic feedback devices | Flashforge Creator Pro * | [66] | |
Soft surface EMG sensing structures | Flashforge Creator Pro * | [67] | |
Force sensor—detect muscle contraction using force Myography | Flashforge Creator Pro * | [68] | |
Whisker inspired flexible resistive strain gauges-based tactile sensor | Flashforge Creator Pro * | [69] | |
Integrating resistive deformation, binary, force, and vibration sensors in components | FlashForge Dreamer | [70] | |
Force sensors to encode pressure data from the shoe while it was in use to help creating smart shoe soles iterative personalization | Ultimaker 2+ | [71] | |
Flexible capacitive force sensor | Ultimaker 3 *** | [23] | |
Resistive soft sensor skin for static contact pressure measurement between a hand and an orthosis | Palmiga PI-ETPU 95-250 | Ultimaker 3 Extended *** | [72] |
Metamaterial capacitive sensor array for the detection of normal forces on curved deforming surfaces common to both the soft universal jamming gripper and human elbow wearables | BCN3D | [73] | |
Flexible capacitive and resistive sensors for electroactive polymer, soft actuators, and flexible sensors | Lulzbot Taz 6 *** | [74] | |
Smart 3D printed textile piezoresistive sensor that could be used in breath rate measurement without an extra pulse belt | Prusa i3 MK3 | [75] | |
Resistive sensor integrated into proprioceptive bellow actuator to provide real time position feedback and force estimation for soft robotics | Not mentioned | [76] | |
Flexible capacitive pressure sensor integrated into physical interfaces for wearable robots | E3D Toolchanger | [77] | |
Flexible fingertip force strain gauges-based sensor that measures normal and shear interactions forces resulted from deformations of the thumb and index | Diabase H-Series*** | [78] | |
Bioinspired soft pneumatic actuators with built-in resistive pressure and position sensors, which could be printed with and used in soft robotics | QIDI Tech I | [79] | |
Flexible capacitive force sensor that could be implemented into 3D printed objects, such as soft robotic and prosthetic devices | Palmiga PI-ETPU 85-700+ ** | Flashforge Creator Pro * | [80] |
3D printed thermal mass flow sensor based on one heater element and two resistive thermal sensors | Flashforge Creator Pro * | [81] | |
Flexible piezoresistive shear and normal force sensor that measures the mechanical deformation of the finger tissue | Diabase H-Series *** | [82] | |
An artificial cellular finger with embedded capacitance based pressure sensor on the fingertip | Multi3D Electrifi | SeeMeCNC RostockMax Delta *** | [83] |
3D printed soft fingertip with embedded tactile capacitive sensor for touch feedback in robotics/prosthesis applications | Ultimaker S5 | [84] | |
Conformal flexible wearable antennas for breast cancer electromagnetic hyperthermia treatment | Leapfrog Creatr HS | [85] | |
Cooperative healthcare sensing robots with origami-inspired robotic structures to evaluate patients’ muscle functions through gait analysis (Plantar pressure mapping) and EMG sensing robotic fingers | Tenlog TL-D3 Pro | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloqalaa, Z. Electrically Conductive Fused Deposition Modeling Filaments: Current Status and Medical Applications. Crystals 2022, 12, 1055. https://doi.org/10.3390/cryst12081055
Aloqalaa Z. Electrically Conductive Fused Deposition Modeling Filaments: Current Status and Medical Applications. Crystals. 2022; 12(8):1055. https://doi.org/10.3390/cryst12081055
Chicago/Turabian StyleAloqalaa, Ziyad. 2022. "Electrically Conductive Fused Deposition Modeling Filaments: Current Status and Medical Applications" Crystals 12, no. 8: 1055. https://doi.org/10.3390/cryst12081055
APA StyleAloqalaa, Z. (2022). Electrically Conductive Fused Deposition Modeling Filaments: Current Status and Medical Applications. Crystals, 12(8), 1055. https://doi.org/10.3390/cryst12081055