Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Dehmelt, H.G.; Krueger, H. Quadrupol-Resonanzfrequenzen von Cl- und Br-Kernen in kristallinem Dichloraethylen und Methylbromid. Z. Phys. 1951, 129, 401–415. [Google Scholar] [CrossRef]
- Bayer, H. Zur Theorie der Spin-Gitterrelaxation in Molekülkristallen. Z. Phys. 1951, 130, 227–238. [Google Scholar] [CrossRef]
- Raghavan, P.; Raghavan, R.S. Nuclear quadrupole interaction in cadmium metal. Phys. Rev. Lett. 1971, 27, 724. [Google Scholar] [CrossRef]
- Bleck, J.; Butt, R.; Haas, H.; Ribbe, W.; Zeitz, W. In-beam measurements of the nuclear quadrupole interaction in cadmium metal. Phys. Rev. Lett. 1972, 29, 1371. [Google Scholar] [CrossRef]
- Christiansen, J.; Heubes, P.; Keitel, R.; Klinger, W.; Loeffler, W.; Sandner, W.; Witthuhn, W. Temperature dependence of the electric field gradient in noncubic metals. Z. Phys. B Cond. Matt. 1976, 24, 177–187. [Google Scholar] [CrossRef]
- Nishiyama, K.; Dimmling, F.; Kornrumpf, T.; Riegel, D. Theory of the temperature dependence of the electric field gradient in noncubic metals. Phys. Rev. Lett. 1976, 37, 357. [Google Scholar] [CrossRef]
- Nishiyama, K.; Riegel, D. Recent developments in the analysis of electric field gradients in metals. Hyperfine Interact. 1978, 4, 490–508. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Dederichs, P.H. First-principles calculation of the electric-field gradient in hcp metals. Phys. Rev. B 1988, 37, 2792. [Google Scholar] [CrossRef]
- Blaha, P.; Dufek, P.; Schwarz, K.; Haas, H. Calculation of electric hyperfine interaction parameters in solids. Hyperfine Interact. 1996, 97, 1–10. [Google Scholar] [CrossRef]
- Torumba, D.; Parlinski, K.; Rots, M.; Cottenier, S. Temperature dependence of the electric-field gradient in hcp-Cd from first principles. Phys. Rev. B 2006, 74, 144304. [Google Scholar] [CrossRef]
- Nikolaev, A.V.; Chtchelkatchev, N.M.; Salamatin, D.A.; Tsvyashchenko, A.V. Towards an ab initio theory for the temperature dependence of electric field gradients in solids: Application to hexagonal lattices of Zn and Cd. Phys. Rev. B 2020, 101, 064310. [Google Scholar] [CrossRef] [Green Version]
- Potzel, W.; Adlassnig, W.; Närger, U.; Obenhuber, T.; Riski, K.; Kalvius, G.M. Temperature dependence of hyperfine interactions and anisotropy of recoil-free fraction: A Mössbauer study of the 93.3 keV resonance of 67Zn in single crystals of zinc metal. Phys. Rev. B 1984, 30, 4980. [Google Scholar] [CrossRef]
- Bastow, T.J. 67Zn NMR in zinc metal. J. Phys. Condens. Matter. 1996, 8, 11309. [Google Scholar] [CrossRef]
- Raghavan, P.; Raghavan, R.S.; Kaufmann, E.N.; Krien, K.; Naumann, R.A. Nuclear quadrupole interaction of 111Cd in zinc (by PAC). J. Phys. F Met. Phys. 1974, 4, L80. [Google Scholar] [CrossRef]
- Hermans, L.; van Cauteren, J.; Rots, M. Anomalous low temperature behaviour of the electric field gradient at 111Cd in cadmium and zinc. Phys. Lett. A 1985, 108, 210–214. [Google Scholar] [CrossRef]
- Haas, H. Temperature Dependence of Electric-Field Gradient in Zn and Cd: Ending the T3/2 “Myth”. Manuscript to Be Submitted to Physical Review B. Available online: https://indico.cern.ch/event/1182057/ (accessed on 3 July 2022).
- Freitag, K. A facility for ion implantation in samples colder than 0.5 K. Radiat. Eff. 1979, 44, 185. [Google Scholar] [CrossRef]
- Schell, J.; Lupascu, D.C.; Carbonari, A.W.; Mansano, R.D.; Junior, I.S.R.; Dang, T.T.; Anusca, I.; Trivedi, H.; Johnston, K.; Vianden, R. Ion implantation in titanium dioxide thin films studied by perturbed angular correlations. J. Appl. Phys. 2017, 121, 145302. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J. SRIM—The Stopping and Range of Ions. Matter. Nucl. Instr. Meth. 2010, B268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G.J.; Gharsa, T.P.; Giles, T.J.; Grenard, J.-L.; Locci, F.; Martins, P.; et al. The ISOLDE facility. J. Phys. G Nucl. Part. Phys. 2017, 44, 094002. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.; Schell, J.; Correia, J.G.; Deicher, M.; Gunnlaugsson, H.P.; Fenta, A.S.; David-Bosne, E.; Costa, A.R.G.; Lupascu, D.C. The solid state physics programme at ISOLDE: Recent developments and perspectives. J. Phys. G Nucl. Part. Phys. 2017, 44, 104001. [Google Scholar] [CrossRef]
- Schell, J.; Schaaf, P.; Lupascu, D.C. Perturbed angular correlations at ISOLDE: A 40 years young technique. AIP Adv. 2017, 7, 105017. [Google Scholar] [CrossRef] [Green Version]
- Hofsaess, H.; Deicher, M. Perturbed γ-γ-Angular Correlation Program. Version 5.25 of 20-jan-2002. The UNCPAC software has been mostly developed by H. Hofsäss based on a first version called PAC written by H. Hofsäss and M. Deicher in 1988.
- Nagl, M.; Vetter, U.; Uhrmacher, M.; Hofsäss, H. A new all-digital time differential γ-γ angular correlation spectrometer. Rev. Sci. Instrum. 2010, 81, 073501. [Google Scholar] [CrossRef]
- Raghavan, R.S.; Raghavan, P. Anomalous temperature dependence of the quadrupole interaction in cadmium. Phys. Lett. A 1971, 36, 313. [Google Scholar] [CrossRef]
Temperature [K] | νQ [MHz] | Err [MHz] |
---|---|---|
77 | 135.92 | 0.20 |
203 | 135.68 | 0.20 |
298 | 133.31 | 0.15 |
343 | 132.43 | 0.20 |
423 | 129.11 | 0.25 |
473 | 127.23 | 0.25 |
543 | 123.72 | 0.30 |
288 | 133.69 | 0.10 |
603 | 118.58 | 0.10 |
653 | 114.32 | 0.10 |
678 | 111.94 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haas, H.; Zyabkin, D.; Schell, J.; Dang, T.T.; Yap, I.C.J.; Michelon, I.; Gaertner, D.; Gerami, A.M.; Noll, C.; Beck, R. Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn. Crystals 2022, 12, 1064. https://doi.org/10.3390/cryst12081064
Haas H, Zyabkin D, Schell J, Dang TT, Yap ICJ, Michelon I, Gaertner D, Gerami AM, Noll C, Beck R. Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn. Crystals. 2022; 12(8):1064. https://doi.org/10.3390/cryst12081064
Chicago/Turabian StyleHaas, Heinz, Dmitry Zyabkin, Juliana Schell, Thien T. Dang, Ian C. J. Yap, Ilaria Michelon, Daniel Gaertner, Adeleh Mokhles Gerami, Cornelia Noll, and Reinhard Beck. 2022. "Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn" Crystals 12, no. 8: 1064. https://doi.org/10.3390/cryst12081064
APA StyleHaas, H., Zyabkin, D., Schell, J., Dang, T. T., Yap, I. C. J., Michelon, I., Gaertner, D., Gerami, A. M., Noll, C., & Beck, R. (2022). Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn. Crystals, 12(8), 1064. https://doi.org/10.3390/cryst12081064