Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Testing and Analysis
3. Results and Discussion
3.1. Microstructure of Powder Mixture
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed Ariff, A.H.; Mohamad Najib, M.A.; Mohd Tahir, S.; As’Arry, A.; Mazlan, N. Effect of sintering temperature on the properties of porous Al2O3-10 wt% RHA/10 wt% Al composite. Adv. Mater. Process. Technol. 2021, 7, 417–428. [Google Scholar] [CrossRef]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Abdullah, M.N.; Mustapha, F.; Ahmad, K.M.; Mustapha, M.; Khan, T.; Singh, B.; Sebaey, T.A. Effect of Different Pre-Treatment on the Microstructure and Intumescent Properties of Rice Husk Ash-Based Geopolymer Hybrid Coating. Polymers 2022, 14, 2252. [Google Scholar] [CrossRef]
- Oveisi, H.; Geramipou, T. High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: Fabrication, microstructure characterization, and mechanical properties. Mater. Res. Express 2019, 6, 1250c2. [Google Scholar] [CrossRef]
- Garai, F. Modern Applications of Aluminium Foams. Int. J. Eng. Manag. Sci. 2020, 5, 14–21. [Google Scholar] [CrossRef]
- Nová, I.; Fraňa, K.; Solfronk, P.; Sobotka, J.; Koreček, D.; Švec, M. Characteristics of Porous Aluminium Materials Produced by Pressing Sodium Chloride into Their Melts. Materials 2021, 14, 4809. [Google Scholar] [CrossRef]
- Finkelstein, A.; Husnullin, D.; Borodianskiy, K. Design and Fabrication of Highly Porous Replicated Aluminum Foam Using Double-Granular Space Holder. Materials 2021, 14, 1619. [Google Scholar] [CrossRef]
- Shaikh, M.B.N.; Arif, S.; Aziz, T.; Waseem, A.; Shaikh, M.A.N.; Ali, M. Microstructural, mechanical and tribological behaviour of powder metallurgy processed SiC and RHA reinforced Al-based composites. Surf. Interfaces 2019, 15, 166–179. [Google Scholar] [CrossRef]
- Kheradmand, A.B.; Fattahi, M.R.; Tayebi, M.; Hamawandi, B. Tribological Characterization of Reinforced Fe Matrix Composites with Hybrid Reinforcement of C, Cu, and SiC Particulates. Crystals 2022, 12, 598. [Google Scholar] [CrossRef]
- Cañadilla, A.; Romero, A.; Rodríguez, G.P. Sustainable production of powder metallurgy aluminum foams sintered by concentrated solar energy. Metals 2021, 11, 1544. [Google Scholar] [CrossRef]
- Kumar, R.M.; Golla, B.R. Effect of Space Holder on Porosity, Structure and Mechanical Properties of Al Processed via Powder Metallurgy. Trans. Indian Inst. Met. 2021, 74, 2379–2386. [Google Scholar] [CrossRef]
- Mohanta, K.; Kumar, A.; Parkash, O.; Kumar, D. Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J. Eur. Ceram. Soc. 2014, 34, 2401–2412. [Google Scholar] [CrossRef]
- Fernandes, I.J.; Sánchez, F.A.L.; Jurado, J.R.; Kieling, A.G.; Rocha, T.L.A.C.; Moraes, C.A.M.; Sousa, V.C. Physical, chemical and electric characterization of thermally treated rice husk ash and its potential application as ceramic raw material. Adv. Powder Technol. 2017, 28, 1228–1236. [Google Scholar] [CrossRef]
- Xavier, L.F.; Suresh, P. Wear behavior of aluminium metal matrix composite prepared from industrial waste. Sci. World J. 2016, 2016, 6538345. [Google Scholar] [CrossRef] [Green Version]
- Dixit, P.; Suhane, A. Aluminum metal matrix composites reinforced with rice husk ash: A review. Mater. Today Proc. 2022, 62, 4194–4201. [Google Scholar] [CrossRef]
- Ghosh, S.; Basak, R.; Rao, A.S. Study of Mechanical and Tribological Characteristics of Aluminium Alloy Reinforced with Rice Husk Ash. In Proceedings of the TRIBOINDIA—2018 An International Conference on Tribology, Mumbai, India, 13–15 December 2018; pp. 1–5. [Google Scholar]
- Khan, M.; Ahmad, S.; Zaidi, S.; Wadood, A.; Subhani, T.; Akhtar, S.; Husain, S.W.; Aune, R.E. Titanium carbide coating on graphene nanoplatelets. J. Mater. Res. Technol. 2020, 9, 3075–3083. [Google Scholar] [CrossRef]
- Akin, I.D.; Likos, W.J. Brazilian tensile strength testing of compacted clay. Geotech. Test. J. 2017, 40, 608–617. [Google Scholar] [CrossRef]
- Ali, M.S.; Azmah Hanim, M.A.; Tahir, S.M.; Jaafar, C.N.A.; Norkhairunnisa, M.; Matori, K.A. The effect of nano-copper additives on the porosity, mechanical properties, and microstructure of alumina ceramics using commercial rice husk ash as a pore former. J. Aust. Ceram. Soc. 2017, 53, 963–974. [Google Scholar] [CrossRef]
- Najib, M.A.M.; Ariff, A.H.M.; Tahir, S.M.; As’arry, A.; Mazlan, N. Microstructural, physical and mechanical analysis of RHA pore modified porous alumina with aluminum as reinforcement. ASEAN Eng. J. 2019, 9, 29–43. [Google Scholar] [CrossRef]
- Aida, S.F.; Zuhailawati, H.; Anasyida, A.S. The Effect of Space Holder Content and Sintering Temperature of Magnesium Foam on Microstructural and Properties Prepared by Sintering Dissolution Process (SDP) Using Carbamide Space Holder. Procedia Eng. 2017, 184, 290–297. [Google Scholar] [CrossRef]
- Zenger, D.C.; Cai, H.; McNeill, J.; Ludwig, R. Classification Strategy to Identify and Classify Common Cracks in Green-State Powdered Metallurgy Compacts. Rev. Prog. Quant. Nondestruct. Eval. 1997, 16, 1443–1450. [Google Scholar]
- Khamsuk, S.; Joosawat, A.; Panomtang, N.; Wongtimnoi, K. Enhancement of mechanical properties of porous aluminum by silica sand particles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 244, 012024. [Google Scholar] [CrossRef]
Specimens | Qualitative Results, wt.% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | O | Si | Na | Mg | Cl | K | C | Ca | |
Al powder | 58.32 | 11.63 | - | - | - | - | - | 30.03 | - |
RHA | - | 57.22 | 40.52 | - | 0.62 | - | 0.59 | - | 1.05 |
RHA-10 wt.% | 68.39 | 17.40 | 10.96 | - | - | - | - | - | - |
RHA-15 wt.% | 44.04 | 51.19 | 1.05 | 0.61 | 1.13 | 0.45 | 1.53 | - | - |
RHA-20 wt.% | 52.75 | 14.21 | 32.65 | - | - | - | 0.38 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Ariff, A.H.; Jun Lin, O.; Jung, D.-W.; Mohd Tahir, S.; Sulaiman, M.H. Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method. Crystals 2022, 12, 1100. https://doi.org/10.3390/cryst12081100
Mohamed Ariff AH, Jun Lin O, Jung D-W, Mohd Tahir S, Sulaiman MH. Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method. Crystals. 2022; 12(8):1100. https://doi.org/10.3390/cryst12081100
Chicago/Turabian StyleMohamed Ariff, Azmah Hanim, Ong Jun Lin, Dong-Won Jung, Suraya Mohd Tahir, and Mohd Hafis Sulaiman. 2022. "Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method" Crystals 12, no. 8: 1100. https://doi.org/10.3390/cryst12081100
APA StyleMohamed Ariff, A. H., Jun Lin, O., Jung, D. -W., Mohd Tahir, S., & Sulaiman, M. H. (2022). Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method. Crystals, 12(8), 1100. https://doi.org/10.3390/cryst12081100